96 research outputs found

    Increased Zygote-Derived Plantlet Formation through In Vitro Rescue of Immature Embryos of Highly Apomictic Opuntia ficus-indica (Cactaceae)

    Get PDF
    O. ficus-indica (prickly pear cactus) is an important forage and food source in arid and semiarid ecosystems and is the most important cactus species in cultivation globally. The high degree of apomixis in the species is a hindrance in plant breeding programs where genetic segregation is sought for the selection of superior genotypes. To understand if in ovulo embryo rescue could increase the proportion of zygotic seedlings, we compared the mature seed-derived seedlings with those regenerated from in vitro embryo rescue at 20, 25, 30, 35, and 40 post-anthesis days (PADs) in four Italian cultivars. The seedlings were classified as apomictic or zygotic based on molecular marker analysis using inter-sequence single repeat (ISSR) primers. Multiple embryos were recovered from all the cultured immature ovules, and plantlets were regenerated and acclimatized to the field post hardening, with success rates ranging from 62% (‘Senza spine’) to 83% (‘Gialla’). The level of polyembryony differed among cultivars and recovery dates, with the highest being ‘Rossa’, producing 4.8 embryos/ovule at 35 PADs, and ‘Gialla’, the lowest, with 2.7 at 40 PADs. The maximum number of embryos observed within a single ovule was 14 in ‘Trunzara bianca’. ISSR analysis revealed that ovule culture at 35 PADs produced the highest percentage of zygotic seedlings in all the cultivars, from 51% (‘Rossa’) to 98% (‘Gialla’), with a high genotype effect as well. Mature seeds produced much fewer seedlings per seed, ranging from 1.2 in ‘Trunzara bianca’ to 2.0 in ‘Rossa’ and a lower percentage of zygotic seedlings (from 14% in ‘Rossa’ to 63% in ‘Gialla’). Our research opens a pathway to increase the availability of zygotic seedlings in O. ficus-indica breeding programs through in ovulo embryo culture

    Carbon balance and energy fluxes of a Mediterranean crop

    Get PDF
    This paper is based on the analysis of a long-term mass (carbon dioxide, water vapour) and energy (solar radiation) balance monitoring programme carried out during years 2010 and 2012 in an irrigated orange orchard in Sicily, using the Eddy Covariance (EC) method. Orange (Citrus sinensis L.) is one of the main fruit crops worldwide and its evergreen orchard may have a great potential for carbon sequestration, but few data are currently available. In the study, the role of the orchard system in sequestering atmospheric CO2 was analyzed, thus contributing to assess the carbon balance of the specie in the specific environment.Vertical energy fluxes of net radiation, soil heat, sensible heat and latent heat fluxes were measured at orchard scale by EC. Evapotranspiration (ET) values were compared with upscaled transpiration data determined by the sap flow heat pulse technique, evidencing the degree of correspondence between instantaneous transpirational flux at tree level and the micrometeorological measurement of ET at orchard level

    Long-Term Field Evaluation of Conventional vs. Micropropagated Plants of Chrysanthemum cinerariifolium

    Get PDF
    Pyrethrum is a perennial herbaceous plant endemic to the eastern coast of the Adriatic Sea, and introduced in large areas of nearly all continents, where it is cultivated for the industrial extraction of pyrethrins. Pyrethrins are a group of six closely related monoterpene esters, widely used as natural insecticides. The world production of natural pyrethrins is lower than the market demand, and a wider introduction of this crop within the Mediterranean agrosystems could be an appealing opportunity for farmers and manufacturers. The availability of adequate amounts of selected plant material to bring into cultivation is, however, one of the major issues. Therefore, the in vitro propagation of elite pyrethrum genotypes could be a suitable alternative to conventional propagation methods. In this paper, we present the results of a 9-year field comparison between pyrethrum plants coming from an in vitro propagation protocol and plants obtained by cutting from the same mother plants. Furthermore, since plantlets derived from in vitro regeneration may experience ploidy changes, we evaluated the stability of the ploidy level of pyrethrum micropropagated plants by flow cytometry (FCM) analysis. FCM screening revealed no differences among the morphotypes and between them and the mother plant. Likewise, the field evaluation of plants gave no significant differences between flower yields in both groups. Hence, micropropagation was confirmed as an easy, efficient and reproducible method to obtain large quantities of selected pyrethrum genotypes

    MICROMETEOROLOGICAL AND SAP FLOW MEASUREMENT OF WATER VAPOUR EXCHANGES IN OLIVE: SCALING UP FROM CANOPY TO ORCHARD

    Get PDF
    A comparison of water consumption evaluated at tree and orchard level was carried out in a commercial olive orchard located in Sicily using up-scaled sap-flow evapotranspiration estimations and eddy covariance measurements. Sap flow probes were installed on olive trees placed in one of the four plots characterizing a heterogeneous orchard. Trees were chosen, from a preliminary footprint analysis, in correspondence to the peak of the “relative normalized contribution” to flux for the prevailing wind conditions measured by an eddy covariance station localized in the central part of the orchard. Tree-age and planting density as well as main tree and orchard characteristics (Leaf Area per tree, within plot distribution of Trunk Cross Sectional Area TCSA, height and canopy diameter), were used to characterize the plot-to-plot differences. Both TCSA and LAI adopted as scaling parameters showed a high performance. A good agreement between ETec (daily integral of EC-estimated evapotranspiration) and ETsf (up-scale sap flow ET estimate) was found in correspondence of limited canopy or soil evaporation conditions (absence of rain, dew, irrigation supply). Eddy covariance can be considered a reliable reference for up-scaled sap flow estimations of ET, and sap flow can be used as a replacement (proxy) of eddy covariance when atmospheric conditions invalidate the application of this technique to assess ET

    Urgent need for preservation of grapevine (Vitis vinifera L. subsp. vinifera) germplasm from small circum-Sicilian islands as revealed by SSR markers and traditional use investigations

    Get PDF
    Since the last decades grapevine germplasm is undergoing a process of rapid genetic erosion. This process is of particular concern in minor circum-Sicilian islands, because of the sharp reduction of the cultivated surfaces and the shift of their economy from agriculture to tourism. Aiming at valorising and preserving the surviving varieties we collected 185 accessions during several surveys since 2007. Six nuclear microsatellite markers were used for germplasm characterization, yielding 75 different genetic profiles. We found out that most genetic profiles (39) were not listed in national and international grapevine databases, confirming that the Sicilian minor islands represent underexplored hotspots of genetic diversity for grapevine. We also identified several synonymies, often due to geographic isolation, having 20 varieties at least two names. Conversely, 18 homonyms collectively indicated 34 genetically different accessions. Interviews with farmers provided information on current and past usage, and the origin and type of cultivation practices as well. The study also shows the urgent need for preservation of local grapevine germplasm, due to the disappearance of the elder caretakers of these traditional varieties. For rare germplasm preservation most part of the collected grapevine cultivars were introduced in an ex situ collection field

    Overcoming sexual sterility in conservation of endangered species: the prominent role of biotechnology in the multiplication of Zelkova sicula (Ulmaceae), a relict tree at the brink of extinction

    Get PDF
    Biotechnology provides valuable tools to support conservation of plant species, especially in case of threatened taxa or when dealing with seed unavailability, low viability or sterility. However, plant cell culture methods have often to face problems associated with tissue recalcitrance to in vitro systems. Recalcitrance can be related to a variety of triggering factors, involving many efforts and manipulations within one or more of the micropropagation stages before obtaining successful results. An in vitro propagation protocol was developed for Zelkova sicula, a very rare and endangered relict tree, endemic to Sicily (Southern Italy). The species revealed extremely recalcitrant to in vitro culture approaches, but after many trials throughout a number of years an effective micropropagation protocol was completed. The rooting rate was about 84% of the treated explants, 8% of which were successfully acclimatized outdoor and reintroduced in the wild within a comprehensive conservation project. The technique allowed to overcome the problems of sexual sterility of this species, hence contributing concretely to contrast the problems connected with its conservation. However, additional efforts need to be carried out in order to refine the acclimatization step and further improve the whole process effectiveness

    The Italian TREETALKER NETWORK (ITT-Net): continuous large scale monitoring of tree functional traits and vulnerabilities to climate change

    Get PDF
    20openItalian coauthor/editorThe Italian TREETALKER NETWORK (ITT-Net) aims to respond to one of the grand societal challenges: the impact of climate changes on forests ecosystem services and forest dieback. The comprehension of the link between these phenomena requires to complement the most classical approaches with a new monitoring paradigm based on large scale, single tree, high frequency and long-term monitoring tree physiology, which, at present, is limited by the still elevated costs of multi-sensor devices, their energy demand and maintenance not always suitable for monitoring in remote areas. The ITT-Net network will be a unique and unprecedented worldwide example of real time, large scale, high frequency and long-term monitoring of tree physiological parameters. By spring 2020, as part of a national funded project (PRIN) the network will have set 37 sites from the north-east Alps to Sicily where a new low cost, multisensor technology “the TreeTalker®” equipped to measure tree radial growth, sap flow, transmitted light spectral components related to foliage dieback and physiology and plant stability (developed by Nature 4.0), will monitor over 600 individual trees. A radio LoRa protocol for data transmission and access to cloud services will allow to transmit in real time high frequency data on the WEB cloud with a unique IoT identifier to a common database where big data analysis will be performed to explore the causal dependency of climate events and environmental disturbances with tree functionality and resilience. With this new network, we aim to create a new knowledge, introducing a massive data observation and analysis, about the frequency, intensity and dynamical patterns of climate anomalies perturbation on plant physiological response dynamics in order to: 1) characterize the space of “normal or safe tree operation mode” during average climatic conditions; 2) identify the non-linear tree responses beyond the safe operation mode, induced by extreme events, and the tipping points; 3) test the possibility to use a high frequency continuous monitoring system to identify early warning signals of tree stress which might allow to follow tree dynamics under climate change in real time at a resolution and accuracy that cannot always be provided through forest inventories or remote sensing technologies.openCastaldi, S.; Antonucci, S.; Asgharina, S.; Battipaglia, G.; Belelli Marchesini, L.; Cavagna, M.; Chini, I.; Cocozza, C.; Gianelle, D.; La Mantia, T.; Motisi, A.; Niccoli, F.; Pacheco Solana, A.; Sala, G.; Santopuoli, G.; Tonon, G.; Tognetti, R.; Zampedri, R.; Zorzi, I.; Valentini, R.Castaldi, S.; Antonucci, S.; Asgharina, S.; Battipaglia, G.; Belelli Marchesini, L.; Cavagna, M.; Chini, I.; Cocozza, C.; Gianelle, D.; La Mantia, T.; Motisi, A.; Niccoli, F.; Pacheco Solana, A.; Sala, G.; Santopuoli, G.; Tonon, G.; Tognetti, R.; Zampedri, R.; Zorzi, I.; Valentini, R

    Identifying the threshold of soil water content for the precise irrigation scheduling of a Citrus orchard under subsurface drip irrigation

    Get PDF
    Proper irrigation scheduling requires the knowledge of the soil-plant-atmosphere system, including the relationships existing between its various components. During the last decade, the monitoring of soil water content (SWC) has been considered a standard way to determine when crops need to be irrigated. However, under drip irrigation systems in which laterals are laid on the soil surface or buried at a certain depth, the gradients of soil water content are rather high and therefore the threshold of SWC below which crop water stress occurs should account for the position of the sensors; the threshold, in fact, depends on the specific crop system, as well as on the relative position of the measuring sensors with respect to the emitters. The knowledge of this threshold is crucial for irrigation scheduling, especially when regulated deficit irrigation (RDI) strategies are planned during specific stages of crop growth. Objective of this work was to identify the threshold of SWC to be used for the precise irrigation scheduling of a citrus orchard irrigated with a sub-surface system. To this aim, the soil water content measured during irrigation season 2018 in the root zone depth and in two different treatments, were integrated with the measurements of predawn and midday stem water potential and transpiration fluxes. The experiments were carried out in a commercial citrus orchard (C. reticulata cv. Tardivo di Ciaculli) located near the city of Palermo, Italy (38 4’ 53.4" N, 13 25’ 8.2" E), in which a subsurface drip system with twenty emitters per plant was installed at 30 cm depth. Each emitter discharged 2.3 l/h at pressure of 150 kPa. Experimental field was divided in eight plots, half of which constantly maintained under full irrigation (FI) and the other half under deficit irrigation (DI) during the phase II of fruit growth (from July 1 to August 20). The layout was equipped with a standard weather station (Spectrum Technologies, Inc) and eight "drill & drop" sensors (Sentek, Stepney, Australia) installed in a central tree of each plot, 30 cm apart from one emitter; all the sensors were interfaced with a communications board that uses the cellular 3G data network to make an internet connection. The Scholander chamber was used to measure predawn and midday stem water potential, whereas the Granier thermal dissipation probes (two per tree) were installed in four trees to monitor sap flow. Experimental data evidenced that during the examined period transpiration fluxes in treatments DI resulted about 75% of those measured in FI, due to the reduced irrigation volumes and the parallel reduction in vegetative growth observed in the summer flush as a consequence of the lower pre-dawn water potential in DI (-1.1 MPa) compared to FI (-0.4 MPa). Similar results were obtained when considering midday stem water potentials. Finally, the thresholds of SWC below which crop water stress occurs resulted, in the different plots, variable from about 0.20 and 0.25 cm3/cm3
    corecore