3 research outputs found
Adhesion and biofilm formation by Staphylococcus aureus from food processing plants as affected by growth medium, surface type and incubation temperature
This study assessed the effect of different growth media [BHI broth, BHI broth plus glucose (10 g/100 mL) and BHI broth plus NaCl (5 g/100 mL)] and incubation temperatures (28 or 37 ºC) on the adherence, detachment and biofilm formation on polypropylene and stainless steel surfaces (2 x 2 cm coupons) for a prolonged period (24-72 h) by some strains of Staphylococcus aureus (S3, S28 and S54) from food processing plants. The efficacy of the sanitizers sodium hypochlorite (250 mg/mL) and peracetic acid (30 mg/mL) in reducing the number of viable bacterial cells in a preformed biofilm was also evaluated. S. aureus strains adhered in highest numbers in BHI broth, regardless of the type of surface or incubation temperature. Cell detachment from surfaces revealed high persistence over the incubation period. The number of cells needed for biofilm formation was noted in all experimental systems after 3 days. Peracetic acid and sodium hypochlorite were not efficient in completely removing the cells of S. aureus adhered onto polypropylene and stainless steel surfaces. From these results, the assayed strains revealed high capacities to adhere and form biofilms on polypropylene and stainless steel surfaces under the different growth conditions, and the cells in biofilm matrixes were resistant to total removal when exposed to the sanitizers sodium hypochlorite and peracetic acid.Este estudo teve como objetivo avaliar o efeito de diferentes meios de crescimento [caldo BHI, caldo BHI adicionado de glucose (10 g/100 mL) e caldo BHI adicionado de NaCl (5 g/100 mL)] e temperaturas de incubação (28 e 37 ºC) sobre a adesão, separação e formação de biofilme sobre superfÃcies (2 x 2 cm) de polipropileno e aço inoxidável durante longo tempo de incubação (24-72 h) por parte de cepas de Staphylococcus aureus (S3, S58 e S54) isoladas de plantas de processamento de alimentos. Também foi avaliada a eficácia dos sanitizantes hipoclorito de sódio (250 mg/mL) e ácido peracético (30 mg/mL) na redução do número de células bacterianas viáveis presentes em um biofilme pré-formado. As cepas de S. aureus aderiram em número mais elevado quando incubadas em caldo BHI em ambos os tipos de superfÃcies e temperaturas de incubação testadas. A separação das células das superfÃcies revelou alta persistência ao longo do perÃodo de incubação. Número de células necessário para a formação do biofilme foi detectado depois de três dias de incubação em todos os sistemas experimentais. O ácido peracético e o hipoclorito de sódio não foram eficientes em remover completamente a células de S. aureus aderidas sobre as superfÃcies de polipropileno e aço inoxidável. Os resultados obtidos revelaram alta capacidade das cepas ensaiadas em aderir e formar biofilme sobre superfÃcies de polipropileno e aço inoxidável sobre diferentes condições de crescimento e que as células na matriz do biofilme apresentaram-se resistentes à total remoção quando expostas aos sanitizantes hipoclorito de sódio e ácido peracético
PEGylation enhances the antibacterial and therapeutic potential of amphibian host defence peptides.
Aurein 2.1, aurein 2.6 and aurein 3.1 are amphibian host defence peptides that kill bacteria via the use of lytic amphiphilic α-helical structures. The C-terminal PEGylation of these peptides led to decreased antibacterial activity (Minimum Lethal Concentration (MLCs) ↓ circa one and a half to threefold), reduced levels of amphiphilic α-helical structure in solvents (α-helicity ↓ circa 15.0%) and lower surface activity (Δπ ↓ > 1.5 mN m ). This PEGylation of aureins also led to decreased levels of amphiphilic α-helical structure in the presence of anionic membranes and zwitterionic membranes (α-helicity↓ > 10.0%) as well as reduced levels of penetration (Δπ ↓ > 3.0 mN m ) and lysis (lysis ↓ > 10.0%) of these membranes. Based on these data, it was proposed that the antibacterial action of PEGylated aureins involved the adoption of α-helical structures that promote the lysis of bacterial membranes, but with lower efficacy than their native counterparts. However, PEGylation also reduced the haemolytic activity of native aureins to negligible levels (haemolysis ↓ from circa 10% to 3% or less) and improved their relative therapeutic indices (RTIs ↑ circa three to sixfold). Based on these data, it is proposed that PEGylated aureins possess the potential for therapeutic development; for example, to combat infections due to multi-drug resistant strains of S. aureus, designated as high priority by the World Health Organization. [Abstract copyright: Copyright © 2021 Elsevier B.V. All rights reserved.
Recent advances in the study of biocorrosion: an overview Avanços recentes no estudo da biocorrosão: uma revisão
Biocorrosion processes at metal surfaces are associated with microorganisms, or the products of their metabolic activities including enzymes, exopolymers, organic and inorganic acids, as well as volatile compounds such as ammonia or hydrogen sulfide. These can affect cathodic and/or anodic reactions, thus altering electrochemistry at the biofilm/metal interface. Various mechanisms of biocorrosion, reflecting the variety of physiological activities carried out by different types of microorganisms, are identified and recent insights into these mechanisms reviewed. Many modern investigations have centered on the microbially-influenced corrosion of ferrous and copper alloys and particular microorganisms of interest have been the sulfate-reducing bacteria and metal (especially manganese)-depositing bacteria. The importance of microbial consortia and the role of extracellular polymeric substances in biocorrosion are emphasized. The contribution to the study of biocorrosion of modern analytical techniques, such as atomic force microscopy, Auger electron, X-ray photoelectron and Mössbauer spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy and microsensors, is discussed.<br>Processos de biocorrosão na superfÃcie de metais são associados com microrganismos ou com os seus produtos metabólicos, tais como: enzimas, exopolÃmeros, ácidos orgânicos e inorgânicos, e compostos voláteis como amônio ou sulfeto de hidrogênio. Todos estes produtos podem afetar reações catódicas e/ou anódicas, alterando processos eletroquÃmicos na interface biofilme/metal. Esta revisão discute diversos mecanismos de biocorrosão causados pelos diferentes atividades fisiológicas associadas com microrganismos e os conhecimentos mais recentes. Estudos modernos da corrosão microbiologicamente influenciada focalizam problemas em ligas de ferro e de cobre. Microrganismos especialmente enfocados são as bactérias redutoras de sulfato e bactérias que depositam metais, destacando aquelas que depositam manganês. A importância de consórcios microbianos e o papel de substâncias poliméricas extracelulares na biocorrosão são enfatizados nesta revisão. Considera-se a contribuição de técnicas analÃticas modernas, tais como microscopia de força atómica, espectroscopia Auger, espectroscopia de raio-X, espectroscopia Mössbauer, espectroscopia de infra-vermelho de reflectância total com transformação de Fourier e microsensores