1,006 research outputs found

    Renormalization of composite operators

    Get PDF
    The blocked composite operators are defined in the one-component Euclidean scalar field theory, and shown to generate a linear transformation of the operators, the operator mixing. This transformation allows us to introduce the parallel transport of the operators along the RG trajectory. The connection on this one-dimensional manifold governs the scale evolution of the operator mixing. It is shown that the solution of the eigenvalue problem of the connection gives the various scaling regimes and the relevant operators there. The relation to perturbative renormalization is also discussed in the framework of the ϕ3\phi^3 theory in dimension d=6d=6.Comment: 24 pages, revtex (accepted by Phys. Rev. D), changes in introduction and summar

    Ising Spin Glasses on Wheatstone-Bridge Hierarchical Lattices

    Get PDF
    Nearest-neighbor-interaction Ising spin glasses are studied on three different hierarchical lattices, all of them belonging to the Wheatstone-Bridge family. It is shown that the spin-glass lower critical dimension in these lattices should be greater than 2.32. Finite-temperature spin-glass phases are found for a lattice of fractal dimension D3.58D \approx 3.58 (whose unit cell is obtained from a simple construction of a part of the cubic lattice), as well as for a lattice of fractal dimension close to five.Comment: Accepted for publication in Physics Letters

    Renormalization group flows for gauge theories in axial gauges

    Get PDF
    Gauge theories in axial gauges are studied using Exact Renormalisation Group flows. We introduce a background field in the infrared regulator, but not in the gauge fixing, in contrast to the usual background field gauge. It is shown how heat-kernel methods can be used to obtain approximate solutions to the flow and the corresponding Ward identities. Expansion schemes are discussed, which are not applicable in covariant gauges. As an application, we derive the one-loop effective action for covariantly constant field strength, and the one-loop beta-function for arbitrary regulator

    Wegner-Houghton equation and derivative expansion

    Get PDF
    We study the derivative expansion for the effective action in the framework of the Exact Renormalization Group for a single component scalar theory. By truncating the expansion to the first two terms, the potential UkU_k and the kinetic coefficient ZkZ_k, our analysis suggests that a set of coupled differential equations for these two functions can be established under certain smoothness conditions for the background field and that sharp and smooth cut-off give the same result. In addition we find that, differently from the case of the potential, a further expansion is needed to obtain the differential equation for ZkZ_k, according to the relative weight between the kinetic and the potential terms. As a result, two different approximations to the ZkZ_k equation are obtained. Finally a numerical analysis of the coupled equations for UkU_k and ZkZ_k is performed at the non-gaussian fixed point in D<4D<4 dimensions to determine the anomalous dimension of the field.Comment: 15 pages, 3 figure

    Monte Carlo and Renormalization Group Effective Potentials in Scalar Field Theories

    Get PDF
    We study constraint effective potentials for various strongly interacting ϕ4\phi^4 theories. Renormalization group (RG) equations for these quantities are discussed and a heuristic development of a commonly used RG approximation is presented which stresses the relationships among the loop expansion, the Schwinger-Dyson method and the renormalization group approach. We extend the standard RG treatment to account explicitly for finite lattice effects. Constraint effective potentials are then evaluated using Monte Carlo (MC) techniques and careful comparisons are made with RG calculations. Explicit treatment of finite lattice effects is found to be essential in achieving quantitative agreement with the MC effective potentials. Excellent agreement is demonstrated for d=3d=3 and d=4d=4, O(1) and O(2) cases in both symmetric and broken phases.Comment: 16 pages, 4 figures appended to end of this fil

    Holographic renormalisation group flows and renormalisation from a Wilsonian perspective

    No full text
    From the Wilsonian point of view, renormalisable theories are understood as submanifolds in theory space emanating from a particular fixed point under renormalisation group evolution. We show how this picture precisely applies to their gravity duals. We investigate the Hamilton-Jacobi equation satisfied by the Wilson action and find the corresponding fixed points and their eigendeformations, which have a diagonal evolution close to the fixed points. The relevant eigendeformations are used to construct renormalised theories. We explore the relation of this formalism with holographic renormalisation. We also discuss different renormalisation schemes and show that the solutions to the gravity equations of motion can be used as renormalised couplings that parametrise the renormalised theories. This provides a transparent connection between holographic renormalisation group flows in the Wilsonian and non-Wilsonian approaches. The general results are illustrated by explicit calculations in an interacting scalar theory in AdS space

    Prospective evaluation of quality of life after conventional abdominal aortic aneurysm surgery

    Get PDF
    Objectives:To evaluate the changes in quality of life following conventional abdominal aortic aneurysm repair.Design:Prospective study.Materials and methods:Fifty-nine consecutive patients (50 men; nine women) in two surgical centres were investigated preoperatively, and at 6 weeks, 3 months and 6 months postoperatively. Quality of life was measured using the Short Form 36 (SF 36) questionnaire and the York Quality of Life questionnaire, from which the Rosser index was calculated.Results:Rosser index assessment showed restoration of quality of life to preoperative levels by 3 months, and significant improvement at 6 months. Changes in the SF 36 revealed significant improvement in mental health, and physical role limitation at all times postoperatively. Social function worsened at 6 weeks but improved to preoperative levels by 3 and 6 months after surgery.Conclusions:Quality of life was improved after open aortic aneurysm repair. The time course of recovery shows a predominant improvement between 6 weeks and 3 months postoperatively

    N=1* model and glueball superpotential from Renormalization-Group-improved perturbation theory

    Full text link
    A method for computing the low-energy non-perturbative properties of SUSY GFT, starting from the microscopic lagrangian model, is presented. The method relies on covariant SUSY Feynman graph techniques, adapted to low energy, and Renormalization-Group-improved perturbation theory. We apply the method to calculate the glueball superpotential in N=1 SU(2) SYM and obtain a potential of the Veneziano-Yankielowicz type.Comment: 19 pages, no figures; added references; note added at the end of the paper; version to appear in JHE

    Tachyon Condensation, Open-Closed Duality, Resolvents, and Minimal Bosonic and Type 0 Strings

    Full text link
    Type 0A string theory in the (2,4k) superconformal minimal model backgrounds and the bosonic string in the (2,2k-1) conformal minimal models, while perturbatively identical in some regimes, may be distinguished non-perturbatively using double scaled matrix models. The resolvent of an associated Schrodinger operator plays three very important interconnected roles, which we explore perturbatively and non-perturbatively. On one hand, it acts as a source for placing D-branes and fluxes into the background, while on the other, it acts as a probe of the background, its first integral yielding the effective force on a scaled eigenvalue. We study this probe at disc, torus and annulus order in perturbation theory, in order to characterize the effects of D-branes and fluxes on the matrix eigenvalues. On a third hand, the integrated resolvent forms a representation of a twisted boson in an associated conformal field theory. The entire content of the closed string theory can be expressed in terms of Virasoro constraints on the partition function, which is realized as wavefunction in a coherent state of the boson. Remarkably, the D-brane or flux background is simply prepared by acting with a vertex operator of the twisted boson. This generates a number of sharp examples of open-closed duality, both old and new. We discuss whether the twisted boson conformal field theory can usefully be thought of as another holographic dual of the non-critical string theory.Comment: 37 pages, some figures, LaTe

    Stochastic Quantization vs. KdV Flows in 2D Quantum Gravity

    Full text link
    We consider the stochastic quantization scheme for a non-perturbative stabilization of 2D quantum gravity and prove that it does not satisfy the KdV flow equations. It therefore differs from a recently suggested matrix model which allows real solutions to the KdV equations. The behaviour of the Fermi energy, the free energy and macroscopic loops in the stochastic quantization scheme are elucidated.Comment: 17 page
    corecore