490 research outputs found

    Deceleration area and fetal acidemia

    Get PDF
    Aims: To compare the predictive ability for neonatal acidemia of individual components of intrapartum cardiotocography (CTG) described by National Institute of Child Health and Human Development (NICHD) system and deceleration area. Design: Case-control study. Setting: Spanish tertiary obstetrical hospital. Population: CTG patterns of 102 acidemic fetus (umbilical arterial cord gas pH =7.10, base deficit (BD>48) and 102 nonacidemic controls (umbilical arterial cord gas pH>7.10). Methods: Two reviewers blind to clinical and outcome data analyzed the last thirty minutes before delivery of 204 fetal heart rate (FHR) tracings, extracting those features defined by NICHD and certain measures of FHR decelerations, including deceleration area, not considered by this system. Outcome measures: The primary outcome was the predictive ability of NICHD features and non-NICHD deceleration measures for fetal acidemia. The secondary outcome was the impact of deceleration area in the last 30 min of labor on gasometry components (pH, BD and lactate). Results: Minimal variability (area under the curve (AUC) 0.74), total number of late (AUC: 0.75) and prolonged decelerations (0.77) were the three NICHD features with the greatest predictive ability for fetal acidemia in the last thirty minutes of labor. Total deceleration area demonstrated the highest discrimination power (AUC: 0.83) of all the analyzed elements. For each cm2 the area increases in the last 30 min of labor, pH decreases 0.08 units, BD increases 0.272 mEq/L and lactate 0.183 mEq/L. Conclusions: Total deceleration area showed the greatest predictive ability for fetal acidemia and its measure could help to estimate intrapartum fetal acid-base status

    A Study on the Impacts of Slot Types and Training Data on Joint Natural Language Understanding in a Spanish Medication Management Assistant Scenario

    Get PDF
    This study evaluates the impacts of slot tagging and training data length on joint natural language understanding (NLU) models for medication management scenarios using chatbots in Spanish. In this study, we define the intents (purposes of the sentences) for medication management scenarios and two types of slot tags. For training the model, we generated four datasets, combining long/short sentences with long/short slots, while for testing, we collect the data from real interactions of users with a chatbot. For the comparative analysis, we chose six joint NLU models (SlotRefine, stack-propagation framework, SF-ID network, capsule-NLU, slot-gated modeling, and a joint SLU-LM model) from the literature. The results show that the best performance (with a sentence-level semantic accuracy of 68.6%, an F1-score of 76.4% for slot filling, and an accuracy of 79.3% for intent detection) is achieved using short sentences and short slots. Our results suggest that joint NLU models trained with short slots yield better results than those trained with long slots for the slot filling task. The results also indicate that short slots could be a better choice for the dialog system because of their simplicity. Importantly, the work demonstrates that the performance of the joint NLU models can be improved by selecting the correct slot configuration according to the usage scenario. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    In vitro cell cytotoxicity profile and morphological response to polyoxometalate-stabilised gold nanoparticles

    Get PDF
    The size and redox properties of molecular polyoxometalates (POMs) make them extremely relevant for bioapplications: from disrupting tumour growth and enzyme inhibition, to DNA-intercalating agents and antimicrobial applications. Their unique ability to reversibly dominate and receive electrons, coupled with their high anionic charge, also makes them suitable for the preparation of zero-valent state metal nanoparticles (NPs) from molecular precursors. Polyoxometalate-stabilised nanoparticles (NPs@POM) are therefore an ideal delivery vehicle for bioactive POMs. Here we show how POM-stabilised gold NPs (AuNPs@POM) are massively internalised into Vero (kidney epithelial) and B16 (skin melanoma) cell lines with variable cytotoxic effects. Cell viability assays and quantification of cytoplasmic membrane composition revealed that the Vero cell line was unaltered by the internalisation of these hybrid particles; while their internalisation in B16 tumour cells produced mild cytotoxic effects and an antiproliferative cell cycle arrest in the G0/G1 and G2/M phases. The observed perturbation of the tumour cell line combined with the high degree of internalisation means that these (or similar) NPs@POM could serve as candidates for a range of bioapplications in diagnostics or therapy

    Variability of Image Features Computed from Conventional and Respiratory-Gated PET/CT Images of Lung Cancer

    Get PDF
    AbstractRadiomics is being explored for potential applications in radiation therapy. How various imaging protocols affect quantitative image features is currently a highly active area of research. To assess the variability of image features derived from conventional [three-dimensional (3D)] and respiratory-gated (RG) positron emission tomography (PET)/computed tomography (CT) images of lung cancer patients, image features were computed from 23 lung cancer patients. Both protocols for each patient were acquired during the same imaging session. PET tumor volumes were segmented using an adaptive technique which accounted for background. CT tumor volumes were delineated with a commercial segmentation tool. Using RG PET images, the tumor center of mass motion, length, and rotation were calculated. Fifty-six image features were extracted from all images consisting of shape descriptors, first-order features, and second-order texture features. Overall, 26.6% and 26.2% of total features demonstrated less than 5% difference between 3D and RG protocols for CT and PET, respectively. Between 10 RG phases in PET, 53.4% of features demonstrated percent differences less than 5%. The features with least variability for PET were sphericity, spherical disproportion, entropy (first and second order), sum entropy, information measure of correlation 2, Short Run Emphasis (SRE), Long Run Emphasis (LRE), and Run Percentage (RPC); and those for CT were minimum intensity, mean intensity, Root Mean Square (RMS), Short Run Emphasis (SRE), and RPC. Quantitative analysis using a 3D acquisition versus RG acquisition (to reduce the effects of motion) provided notably different image feature values. This study suggests that the variability between 3D and RG features is mainly due to the impact of respiratory motion

    Citrate-capped gold nanoparticles for the label-free detection of ubiquitin C-terminal hydrolase-1

    Get PDF
    Ubiquitin C-terminal hydrolase-1 (UCH-L1) is a specific neuronal endoprotease that cleaves the specific peptide bond between ubiquitin molecules. UCH-L1 is released in serum and cerebrospinal fluid after severe brain injury and is considered to be an important biomarker of brain injury. A common polymorphism of UCH-L1 (S18Y) is also linked to a reduced risk of Parkinson's disease. In addition to its function in neuronal tissues, UCH-L1 may also play a part in the progression of certain non-neuronal cancers. UCH-L1 is highly expressed in primary lung tumors and colo-rectal cancers, suggesting a role in tumorigenesis. We report here the development of a sensitive and accurate UCH-L1 assay based on the surface plasmon resonance (SPR) absorbance of gold nanoparticles. We created a unique UCH-L1 substrate containing a ubiquitin molecule with two terminal thiol groups. This UCH-L1 substrate interacted with gold nanoparticles via the terminal thiol groups and induced clustering of the nanoparticles, which was detected by SPR absorbance at 650 nm. UCH-L1 proteolytically cleaved the substrate and the clustered gold nanoparticles were dispersed and could be detected by a shift in the SPR absorbance to 530 nm. This change in absorbance was proportional to the concentration of UCH-L1 and can be used for the quantification of functional UCH-L1. The currently available fluorescence-based UCH-L1 assay is affected by a high background signal and a poor detection limit, especially in the presence of serum. The assay reported here can detect concentrations of UCH-L1 as low as 20 ng ml-1(0.8 nM) and the presence of serum had no effect on the detection limit. This assay could be adapted for the rapid determination of the severity of brain injury and could also be applied to high-throughput screening of inhibitors of UCH-L1 enzymatic activity in Parkinson's disease and cancer

    Using an independent geochronology based on palaeomagnetic secular variation (PSV) and atmospheric Pb deposition to date Baltic Sea sediments and infer 14C reservoir age

    Get PDF
    Dating of sediment cores from the Baltic Sea has proven to be difficult due to uncertainties surrounding the C-14 reservoir age and a scarcity of macrofossils suitable for dating. Here we present the results of multiple dating methods carried out on cores in the Gotland Deep area of the Baltic Sea. Particular emphasis is placed on the Littorina stage (8 ka ago to the present) of the Baltic Sea and possible changes in the C-14 reservoir age of our dated samples. Three geochronological methods are used. Firstly, palaeomagnetic secular variations (PSV) are reconstructed, whereby ages are transferred to PSV features through comparison with varved lake sediment based PSV records. Secondly, lead (Pb) content and stable isotope analysis are used to identify past peaks in anthropogenic atmospheric Pb pollution. Lastly, C-14 determinations were carried out on benthic foraminifera (Elphidium spec.) samples from the brackish Littorina stage of the Baltic Sea. Determinations carried out on smaller samples (as low as 4 mu g C) employed an experimental, state-of-the-art method involving the direct measurement of CO2 from samples by a gas ion source without the need for a graphitisation step - the first time this method has been performed on foraminifera in an applied study. The PSV chronology, based on the uppermost Littorina stage sediments, produced ten age constraints between 6.29 and 1.29 cal ka BP, and the Pb depositional analysis produced two age constraints associated with the Medieval pollution peak. Analysis of PSV data shows that adequate directional data can be derived from both the present Littorina saline phase muds and Baltic Ice Lake stage varved glacial sediments. Ferrimagnetic iron sulphides, most likely authigenic greigite (Fe3S4), present in the intermediate Ancylus Lake freshwater stage sediments acquire a gyroremanent magnetisation during static alternating field (AF) demagnetisation, preventing the identification of a primary natural remanent magnetisation for these sediments. An inferred marine reservoir age offset (Delta R) is calculated by comparing the foraminifera C-14 determinations to a PSV & Pb age model. This Delta R is found to trend towards younger values upwards in the core, possibly due to a gradual change in hydrographic conditions brought about by a reduction in marine water exchange from the open sea due to continued isostatic rebound. (C) 2012 Elsevier Ltd. All rights reserved

    Development and testing of a database of NIH research funding of AAPM members: A report from the AAPM Working Group for the Development of a Research Database (WGDRD).

    Get PDF
    PURPOSE: To produce and maintain a database of National Institutes of Health (NIH) funding of the American Association of Physicists in Medicine (AAPM) members, to perform a top-level analysis of these data, and to make these data (hereafter referred to as the AAPM research database) available for the use of the AAPM and its members. METHODS: NIH-funded research dating back to 1985 is available for public download through the NIH exporter website, and AAPM membership information dating back to 2002 was supplied by the AAPM. To link these two sources of data, a data mining algorithm was developed in Matlab. The false-positive rate was manually estimated based on a random sample of 100 records, and the false-negative rate was assessed by comparing against 99 member-supplied PI_ID numbers. The AAPM research database was queried to produce an analysis of trends and demographics in research funding dating from 2002 to 2015. RESULTS: A total of 566 PI_ID numbers were matched to AAPM members. False-positive and -negative rates were respectively 4% (95% CI: 1-10%, N = 100) and 10% (95% CI: 5-18%, N = 99). Based on analysis of the AAPM research database, in 2015 the NIH awarded USD110MtomembersoftheAAPM.ThefourNIHinstituteswhichhistoricallyawardedthemostfundingtoAAPMmembersweretheNationalCancerInstitute,NationalInstituteofBiomedicalImagingandBioengineering,NationalHeartLungandBloodInstitute,andNationalInstituteofNeurologicalDisordersandStroke.In2015,over85USD 110M to members of the AAPM. The four NIH institutes which historically awarded the most funding to AAPM members were the National Cancer Institute, National Institute of Biomedical Imaging and Bioengineering, National Heart Lung and Blood Institute, and National Institute of Neurological Disorders and Stroke. In 2015, over 85% of the total NIH research funding awarded to AAPM members was via these institutes, representing 1.1% of their combined budget. In the same year, 2.0% of AAPM members received NIH funding for a total of 116M, which is lower than the historic mean of $120M (in 2015 USD). CONCLUSIONS: A database of NIH-funded research awarded to AAPM members has been developed and tested using a data mining approach, and a top-level analysis of funding trends has been performed. Current funding of AAPM members is lower than the historic mean. The database will be maintained by members of the Working group for the development of a research database (WGDRD) on an annual basis, and is available to the AAPM, its committees, working groups, and members for download through the AAPM electronic content website. A wide range of questions regarding financial and demographic funding trends can be addressed by these data. This report has been approved for publication by the AAPM Science Council

    Methodology and Application of Statistical Techniques to Evaluate the Reliability of Electrical Systems Based on the Use of High Variability Generation Sources

    Full text link
    [EN] This study presents a new methodology, based on Monte-Carlo techniques to evaluate the reliability of a carbon-free electricity generation system based on renewable sources; it uses as inputs the variation of the electricity demand and the fluctuations in the renewable supply and provides the renewable system to be installed to guarantee a specific supply reliability level. Additionally, looking for a reduction of this renewable system, the methodology determines the improvements by the incorporation of nuclear power and electricity storage. The methodology is of general application, its implementation being possible under different contexts, such as different time horizons and different future energy scenarios, both for developing, emerging, and developed countries. The only requirement is to have a sufficient database from which to make predictions for future scenarios of electrical generation-demand balances. As an example of practical implementation, the electrical system reliability for the particular case of Spain in 2040 has been forecasted. When considering the fluctuations in solar and wind power contributions, very high values of the installed power from these renewable sources are needed to reach a high reliability of the system. These values decrease substantially if contributions from nuclear and storage technologies are included.Berna-Escriche, C.; Pérez-Navarro, Á.; Escrivá, A.; Hurtado-Perez, E.; Muñoz-Cobo, JL.; Moros, MC. (2021). Methodology and Application of Statistical Techniques to Evaluate the Reliability of Electrical Systems Based on the Use of High Variability Generation Sources. Sustainability. 13(18):1-26. https://doi.org/10.3390/su131810098S126131

    Efecto de las fases lunares sobre la incidencia de insectos y componentes de rendimiento en el cultivo de frijol (Vigna unguiculata (L.) Walp) | Response of moon phases on insect damage and yield components in cowpea (Vigna unguiculata (L.) Walp.)

    Get PDF
    El efecto de las fases lunares sobre daño de insectos y componentes de rendimiento fue medido en frijol variedad “Catatumbo”. El ensayo se condujo en el Campo Experimental Ana María Campos (LUZ-Agronomía). Se sembraron 16parcelas (cuatro repeticiones durante cada fase lunar), de 21 hileras de 10 m de longitud, usando una densidad de siembra de 0,5 m entre hilera y 0,1 m entre planta. Se utilizó un diseño estadístico de bloques al azar con 4 repeticiones en arreglo factorial de cuatro fases lunares y plantas cubiertas con tul blanco para reflejar la luz versus descubiertas insectos. Las variables vainas por planta (NV) y peso de semillas por planta (PS) fueron medidas y se registró el número de plantas dañadas por noctuidos, pasador de la hoja, saltahojas y coquitos perforadores. El promedio de NV y PS fue mayor en las parcelas descubiertas que en las cubiertas, debido posiblemente a una mayor abscisión floral ocasionada por el sistema utilizado de reflexión de luz. En las plantas descubiertas se observó mayor NV y PS durante luna llena y cuarto creciente;mientras que en las parcelas cubiertas las diferencias de NV y PS debido a las fases lunares son menos perceptibles posiblemente por el reflejo de luz nocturna. La incidencia de noctuidos fue similar entre las fases y las plantas cubiertas y descubiertas El mayor daño de pasador se observó en cuarto menguante. En luna nueva y cuarto menguante, la incidencia de saltahojas fue casi el triple a la observada bajo otras fases. El daño de coquitos perforadores fue mayor en creciente y luna llena. Los resultados evidencian un comportamiento diferencial de las plantas en cuanto al rendimiento del frijol y laincidencia de insectos plagas, según la fase lunar.Palabras clave: Vigna unguiculata, fases lunares, daños de insectos, rendimiento.ABSTRACTTo study the effect of moon phases on insect damage and yield components, a trail was conducted in cowpea “Catatumbo” at Ana María Campos experimental field from La Universidad del Zulia (Maracaibo, Venezuela) during the rainy season (October-December). Sixteen plots (four replications along each moon face) with twenty one rows, 10 m length, using 50 cm among rows and 10 cm among plants were planted. The statistical design was a randomized complete blocks with four replications. Treatments were in a factorial arrangement of two factors: moon phases and plants mechanically covered with white cloth to reflect night light versus plants discovered. Pods plant-1 (TP) and Seeds weight plant-1 (SW) were measured. A number of plants damaged by fall army worn, leaf hopper, leaf hopper and leaf bore beetles were surveyed. TP and SWvalues were higher in no covered plants than discovered ones, maybe because of floral fall caused by light reflection Discovered plants showed higher TP and SW during full moon and second quarter. Statistical differences between TP andSW, in covered plants during moon phases were less perceptible probably because of night light reflection. Plots planted during all moon faces showed similar fall armyworm damage. The highest leaf minor damage was observed in plots planted during first quarter. Leaf hopper incidence was almost three times higher during new moon and fist quarter than the other phases. During full moon and second quarter beetles damage was the highest. A differential performance of cowpea plants in relation to yield components and insect damage was detected depending on moon phase.Key words: Vigna unguiculata, moon phases, insect damage, yield

    Triggering antitumoural drug release and gene expression by magnetic hyperthermia

    Get PDF
    Magnetic nanoparticles (MNPs) are promising tools for a wide array of biomedical applications. One of their most outstanding properties is the ability to generate heat when exposed to alternating magnetic fields, usually exploited in magnetic hyperthermia therapy of cancer. In this contribution, we provide a critical review of the use of MNPs and magnetic hyperthermia as drug release and gene expression triggers for cancer therapy. Several strategies for the release of chemotherapeutic drugs from thermo-responsive matrices are discussed, providing representative examples of their application at different levels (from proof of concept to in vivo applications). The potential of magnetic hyperthermia to promote in situ expression of therapeutic genes using vectors that contain heat-responsive promoters is also reviewed in the context of cancer gene therapy
    corecore