25 research outputs found

    Steps towards the hyperfine splitting measurement of the muonic hydrogen ground state: pulsed muon beam and detection system characterization

    Get PDF
    The high precision measurement of the hyperfine splitting of the muonic-hydrogen atom ground state with pulsed and intense muon beam requires careful technological choices both in the construction of a gas target and of the detectors. In June 2014, the pressurized gas target of the FAMU experiment was exposed to the low energy pulsed muon beam at the RIKEN RAL muon facility. The objectives of the test were the characterization of the target, the hodoscope and the X-ray detectors. The apparatus consisted of a beam hodoscope and X-rays detectors made with high purity Germanium and Lanthanum Bromide crystals. In this paper the experimental setup is described and the results of the detector characterization are presented.Comment: 22 pages, 14 figures, published and open access on JINS

    Computer-Assisted Classification Patterns in Autoimmune Diagnostics: The AIDA Project

    Get PDF
    Antinuclear antibodies (ANAs) are significant biomarkers in the diagnosis of autoimmune diseases in humans, done by mean of Indirect ImmunoFluorescence (IIF)method, and performed by analyzing patterns and fluorescence intensity. This paper introduces the AIDA Project (autoimmunity: diagnosis assisted by computer) developed in the framework of an Italy-Tunisia cross-border cooperation and its preliminary results. A database of interpreted IIF images is being collected through the exchange of images and double reporting and a Gold Standard database, containing around 1000 double reported images, has been settled. The Gold Standard database is used for optimization of aCAD(Computer AidedDetection) solution and for the assessment of its added value, in order to be applied along with an Immunologist as a second Reader in detection of autoantibodies. This CAD system is able to identify on IIF images the fluorescence intensity and the fluorescence pattern. Preliminary results show that CAD, used as second Reader, appeared to perform better than Junior Immunologists and hence may significantly improve their efficacy; compared with two Junior Immunologists, the CAD system showed higher Intensity Accuracy (85,5% versus 66,0% and 66,0%), higher Patterns Accuracy (79,3% versus 48,0% and 66,2%), and higher Mean Class Accuracy (79,4% versus 56,7% and 64.2%)

    First measurement of the temperature dependence of muon transfer rate from muonic hydrogen atoms to oxygen

    Get PDF
    We report the first measurement of the temperature dependence of muon transfer rate from muonic hydrogen atoms to oxygen between 100 and 300 K. Data were obtained from the X-ray spectra of delayed events in a gaseous target, made of a H2/O2 mixture, exposed to a muon beam. This work sets constraints on theoretical models of muon transfer and is of fundamental importance for the measurement of the hyperfine splitting of muonic hydrogen ground state as proposed by the FAMU collaboration

    First measurement of the temperature dependence of muon transfer rate from muonic hydrogen atoms to oxygen

    Get PDF
    We report the first measurement of the temperature dependence of muon transfer rate from muonic hydrogen atoms to oxygen between 100 and 300 K. Data were obtained from the X-ray spectra of delayed events in a gaseous target, made of a H2/O2 mixture, exposed to a muon beam. This work sets constraints on theoretical models of muon transfer and is of fundamental importance for the measurement of the hyperfine splitting of muonic hydrogen ground state as proposed by the FAMU collaboration

    The FAMU experiment at RIKEN-RAL to study the muon transfer rate from hydrogen to other gases

    Get PDF
    The aim of the FAMU (Fisica degli Atomi Muonici) experiment is to realize the first measurement of the hyperfine splitting (hfs) in the 1S state of muonic hydrogen _Ehf s 1S , by using the RIKEN-RAL intense pulsed muon beam and a high-energy mid-infrared tunable laser. This requires a detailed study of the muon transfer mechanism at different temperatures and hence at different epithermal states of the muonic system. The experimental setup involves a cryogenic pressurized gas target and a detection system based on silicon photomultipliers-fiber beam hodoscopes and high purity Germanium detectors and Cerium doped Lanthanium Bromide crystals, for X-rays detection at energies around 100 keV. Simulation, construction and detector performances of the FAMU apparatus at RAL are reported in this paper

    The FAMU experiment at RIKEN-RAL to study the muon transfer rate from hydrogen to other gases

    Get PDF
    The aim of the FAMU (Fisica degli Atomi Muonici) experiment is to realize the first measurement of the hyperfine splitting (hfs) in the 1S state of muonic hydrogen _Ehf s 1S , by using the RIKEN-RAL intense pulsed muon beam and a high-energy mid-infrared tunable laser. This requires a detailed study of the muon transfer mechanism at different temperatures and hence at different epithermal states of the muonic system. The experimental setup involves a cryogenic pressurized gas target and a detection system based on silicon photomultipliers-fiber beam hodoscopes and high purity Germanium detectors and Cerium doped Lanthanium Bromide crystals, for X-rays detection at energies around 100 keV. Simulation, construction and detector performances of the FAMU apparatus at RAL are reported in this paper

    First FAMU observation of muon transfer from \u3bcp atoms to higher-Z elements

    Get PDF
    Abstract: The FAMU experiment aims to accurately measure the hyperfine splitting of the ground state of the muonic hydrogen atom. A measurement of the transfer rate of muons from hydrogen to heavier gases is necessary for this purpose. In June 2014, within a preliminary experiment, a pressurized gas-target was exposed to the pulsed low-energy muon beam at the RIKEN RAL muon facility (Rutherford Appleton Laboratory, U.K.). The main goal of the test was the characterization of both the noise induced by the pulsed beam and the X-ray detectors. The apparatus, to some extent rudimental, has served admirably to this task. Technical results have been published that prove the validity of the choices made and pave the way for the next steps. This paper presents the results of physical relevance of measurements of the muon transfer rate to carbon dioxide, oxygen, and argon from non-thermalized excited \u3bcp atoms. The analysis methodology and the approach to the systematics errors are useful for the subsequent study of the transfer rate as function of the kinetic energy of the \u3bcp currently under way

    FAMU: study of the energy dependent transfer rate \u39b \u3bcp \u2192 \u3bcO

    Get PDF
    The main goal of the FAMU experiment is the measurement of the hyperfine splitting (hfs) in the 1S state of muonic hydrogen \u394Ehfs (\u3bc - p)1S. The physical process behind this experiment is the following: \u3bcp are formed in a mixture of hydrogen and a higher-Z gas. When absorbing a photon at resonance-energy \u394Ehfs 48 0.182 eV, in subsequent collisions with the surrounding H 2 molecules, the \u3bcp is quickly de-excited and accelerated by ~ 2/3 of the excitation energy. The observable is the time distribution of the K-lines X-rays emitted from the \u3bcZ formed by muon transfer (\u3bcp) + Z \u2192 (\u3bcZ)* + p, a reaction whose rate depends on the \u3bcp kinetic energy. The maximal response, to the tuned laser wavelength, of the time distribution of X-ray from K-lines of the (\u3bcZ)* cascade indicate the resonance. During the preparatory phase of the FAMU experiment, several measurements have been performed both to validate the methodology and to prepare the best configuration of target and detectors for the spectroscopic measurement. We present here the crucial study of the energy dependence of the transfer rate from muonic hydrogen to oxygen (\u39b \u3bcp \u2192 \u3bc0 ), precisely measured for the first time
    corecore