20,818 research outputs found

    Substituted phenylarsonic acids; structures and spectroscopy

    Get PDF
    Full NMR and ESI-MS spectra, and differential scanning calorimeter data are presented for 15 substituted phenylarsonic acids, including two new fluoro-substituted examples. X-ray crystal structure determinations of five examples (phenylarsonic acid and the 4-fluoro-, 4-fluoro-3-nitro-, 3-amino-4-hydroxy- and 3-amino-4-methoxy-substituted derivatives) were determined and the H-bonding crystal-packing patterns analysed

    Rapid toxicity detection in water quality control utilizing automated multispecies biomonitoring for permanent space stations

    Get PDF
    The objective of this study was to evaluate proposed design characteristics and applications of automated biomonitoring devices for real-time toxicity detection in water quality control on-board permanent space stations. Simulated tests in downlinking transmissions of automated biomonitoring data to Earth-receiving stations were simulated using satellite data transmissions from remote Earth-based stations

    The Pan-STARRS1 Photometric System

    Full text link
    The Pan-STARRS1 survey is collecting multi-epoch, multi-color observations of the sky north of declination -30 deg to unprecedented depths. These data are being photometrically and astrometrically calibrated and will serve as a reference for many other purposes. In this paper we present our determination of the Pan-STARRS photometric system: gp1, rp1, ip1, zp1, yp1, and wp1. The Pan-STARRS photometric system is fundamentally based on the HST Calspec spectrophotometric observations, which in turn are fundamentally based on models of white dwarf atmospheres. We define the Pan-STARRS magnitude system, and describe in detail our measurement of the system passbands, including both the instrumental sensitivity and atmospheric transmission functions. Byproducts, including transformations to other photometric systems, galactic extinction, and stellar locus are also provided. We close with a discussion of remaining systematic errors.Comment: 39 pages, 9 figures, machine readable table of bandpasses, accepted for publication in Ap

    First-principles prediction of redox potentials in transition-metal compounds with LDA+U

    Full text link
    First-principles calculations within the Local Density Approximation (LDA) or Generalized Gradient Approximation (GGA), though very successful, are known to underestimate redox potentials, such as those at which lithium intercalates in transition metal compounds. We argue that this inaccuracy is related to the lack of cancellation of electron self-interaction errors in LDA/GGA and can be improved by using the DFT+UU method with a self-consistent evaluation of the UU parameter. We show that, using this approach, the experimental lithium intercalation voltages of a number of transition metal compounds, including the olivine Lix_{x}MPO4_{4} (M=Mn, Fe Co, Ni), layered Lix_{x}MO2_{2} (x=x=Co, Ni) and spinel-like Lix_{x}M2_{2}O4_{4} (M=Mn, Co), can be reproduced accurately.Comment: 19 pages, 6 figures, Phys. Rev. B 70, 235121 (2004

    The stochastic Gross-Pitaevskii equation II

    Full text link
    We provide a derivation of a more accurate version of the stochastic Gross-Pitaevskii equation, as introduced by Gardiner et al. (J. Phys. B 35,1555,(2002). The derivation does not rely on the concept of local energy and momentum conservation, and is based on a quasi-classical Wigner function representation of a "high temperature" master equation for a Bose gas, which includes only modes below an energy cutoff E_R that are sufficiently highly occupied (the condensate band). The modes above this cutoff (the non-condensate band) are treated as being essentially thermalized. The interaction between these two bands, known as growth and scattering processes, provide noise and damping terms in the equation of motion for the condensate band, which we call the stochastic Gross-Pitaevskii equation. This approach is distinguished by the control of the approximations made in its derivation, and by the feasibility of its numerical implementation.Comment: 24 pages of LaTeX, one figur

    Using schedulers to test probabilistic distributed systems

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-012-0244-5. Copyright Ā© 2012, British Computer Society.Formal methods are one of the most important approaches to increasing the confidence in the correctness of software systems. A formal specification can be used as an oracle in testing since one can determine whether an observed behaviour is allowed by the specification. This is an important feature of formal testing: behaviours of the system observed in testing are compared with the specification and ideally this comparison is automated. In this paper we study a formal testing framework to deal with systems that interact with their environment at physically distributed interfaces, called ports, and where choices between different possibilities are probabilistically quantified. Building on previous work, we introduce two families of schedulers to resolve nondeterministic choices among different actions of the system. The first type of schedulers, which we call global schedulers, resolves nondeterministic choices by representing the environment as a single global scheduler. The second type, which we call localised schedulers, models the environment as a set of schedulers with there being one scheduler for each port. We formally define the application of schedulers to systems and provide and study different implementation relations in this setting

    The kinetics of surfactant desorption at the airā€“solution interface

    Get PDF
    The kinetics of desorption of the anionic surfactant sodium dodecylbenzene sulfonate at the airā€“solution interface have been studied using neutron reflectivity (NR). The experimental arrangement incorporates a novel flow cell in which the subphase can be exchanged (diluted) using a laminar flow whilst the surface region remains unaltered. The kinetics of the desorption is relatively slow and occurs over many tens of minutes compared with the dilution timescale of approximately 10ā€“30 minutes. A detailed mathematical model, in which the rate of the desorption is determined by transport through a near-surface diffusion layer into a diluted bulk solution below, is developed and provides a good description of the timedependent adsorption data.\ud \ud A key parameter of the model is the ratio of the depth of the diffusion layer, Hc , to the depth of the fluid, Hf, and we find that this is related to the reduced PĆ©clet number, Pe*, for the system, via Hc/Hf, = C/Pe* 1/ 2 . Although from a highly idealised experimental arrangement, the results provide an important insight into the ā€˜rinse mechanismā€™, which is applicable to a wide variety of domestic and industrial circumstances

    Naked singularity resolution in cylindrical collapse

    Full text link
    In this paper, we study the gravitational collapse of null dust in the cylindrically symmetric spacetime. The naked singularity necessarily forms at the symmetry axis. We consider the situation in which null dust is emitted again from the naked singularity formed by the collapsed null dust and investigate the back-reaction by this emission for the naked singularity. We show a very peculiar but physically important case in which the same amount of null dust as that of the collapsed one is emitted from the naked singularity as soon as the ingoing null dust hits the symmetry axis and forms the naked singularity. In this case, although this naked singularity satisfies the strong curvature condition by Kr\'{o}lak (limiting focusing condition), geodesics which hit the singularity can be extended uniquely across the singularity. Therefore we may say that the collapsing null dust passes through the singularity formed by itself and then leaves for infinity. Finally the singularity completely disappears and the flat spacetime remains.Comment: 17 pages, no figur
    • ā€¦
    corecore