14 research outputs found

    The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.)

    Get PDF
    Molecular markers and genetic linkage maps are pre-requisites for molecular breeding in any crop species. In case of peanut or groundnut (Arachis hypogaea L.), an amphidiploid (4X) species, not a single genetic map is, however, available based on a mapping population derived from cultivated genotypes. In order to develop a genetic linkage map for tetraploid cultivated groundnut, a total of 1,145 microsatellite or simple sequence repeat (SSR) markers available in public domain as well as unpublished markers from several sources were screened on two genotypes, TAG 24 and ICGV 86031 that are parents of a recombinant inbred line mapping population. As a result, 144 (12.6%) polymorphic markers were identified and these amplified a total of 150 loci. A total of 135 SSR loci could be mapped into 22 linkage groups (LGs). While six LGs had only two SSR loci, the other LGs contained 3 (LG_AhXV) to 15 (LG_AhVIII) loci. As the mapping population used for developing the genetic map segregates for drought tolerance traits, phenotyping data obtained for transpiration, transpiration efficiency, specific leaf area and SPAD chlorophyll meter reading (SCMR) for 2 years were analyzed together with genotyping data. Although, 2–5 QTLs for each trait mentioned above were identified, the phenotypic variation explained by these QTLs was in the range of 3.5–14.1%. In addition, alignment of two linkage groups (LGs) (LG_AhIII and LG_AhVI) of the developed genetic map was shown with available genetic maps of AA diploid genome of groundnut and Lotus and Medicago. The present study reports the construction of the first genetic map for cultivated groundnut and demonstrates its utility for molecular mapping of QTLs controlling drought tolerance related traits as well as establishing relationships with diploid AA genome of groundnut and model legume genome species. Therefore, the map should be useful for the community for a variety of applications

    Genetic diversity of Bemisia tabaci (Genn.) Populations in Brazil revealed by RAPD markers

    No full text
    Bemisia tabaci (Genn.) was considered a secondary pest in Brazil until 1990, despite being an efficient geminivirus vector in beans and soybean. In 1991, a new biotype, known as B. tabaci B biotype (=B. argentifolii) was detected attacking weed plants and causing phytotoxic problems in Cucurbitaceae. Nowadays, B. tabaci is considered one of the most damaging whitefly pests in agricultural systems worldwide that transmits more than 60 different plant viruses. Little is known about the genetic variability of these populations in Brazil. Knowledge of the genetic variation within whitefly populations is necessary for their efficient control and management. The objectives of the present study were to use RAPD markers (1) to estimate the genetic diversity of B. tabaci populations, (2) to study the genetic relationships among B. tabaci biotypes and two other whitefly species and (3) to discriminate between B. tabaci biotypes. A sample of 109 B. tabaci female individuals obtained from 12 populations in Brazil were analyzed and compared to the A biotype from Arizona (USA) and B biotype from California (USA) and Paraguay. Trialeurodes vaporariorum and Aleurodicus cocois samples were also included. A total of 72 markers were generated by five RAPD primers and used in the analysis. All primers produced RAPD patterns that clearly distinguished the Bemisia biotypes and the two other whitefly species. Results also showed that populations of the B biotype have considerable genetic variability. An average Jaccard similarity of 0.73 was observed among the B biotype individuals analyzed. Cluster analysis demonstrated that, in general, Brazilian biotype B individuals are scattered independently in the localities where samples were collected. Nevertheless, some clusters were evident, joining individuals according to the host plants. AMOVA showed that most of the total genetic variation is found within populations (56.70%), but a significant portion of the variation is found between crops (22.73%). The present study showed that the B biotype is disseminated throughout the sampled areas, infesting several host plants and predominates over the A biotype

    Identification of candidate genome regions controlling disease resistance in Arachis

    Get PDF
    Background Worldwide, diseases are important reducers of peanut (Arachis hypogaea) yield. Sources of resistance against many diseases are available in cultivated peanut genotypes, although often not in farmer preferred varieties. Wild species generally harbor greater levels of resistance and even apparent immunity, although the linkage of agronomically un-adapted wild alleles with wild disease resistance genes is inevitable. Marker-assisted selection has the potential to facilitate the combination of both cultivated and wild resistance loci with agronomically adapted alleles. However, in peanut there is an almost complete lack of knowledge of the regions of the Arachis genome that control disease resistance. Results In this work we identified candidate genome regions that control disease resistance. For this we placed candidate disease resistance genes and QTLs against late leaf spot disease on the genetic map of the A-genome of Arachis, which is based on microsatellite markers and legume anchor markers. These marker types are transferable within the genus Arachis and to other legumes respectively, enabling this map to be aligned to other Arachis maps and to maps of other legume crops including those with sequenced genomes. In total, 34 sequence-confirmed candidate disease resistance genes and five QTLs were mapped. Conclusion Candidate genes and QTLs were distributed on all linkage groups except for the smallest, but the distribution was not even. Groupings of candidate genes and QTLs for late leaf spot resistance were apparent on the upper region of linkage group 4 and the lower region of linkage group 2, indicating that these regions are likely to control disease resistance

    An international reference consensus genetic map with 897 marker loci based on 11 mapping populations for Tetraploid Groundnut (Arachis hypogaea L.)

    Get PDF
    Only a few genetic maps based on recombinant inbred line (RIL) and backcross (BC) populations have been developed for tetraploid groundnut. The marker density, however, is not very satisfactory especially in the context of large genome size (2800 Mb/1C) and 20 linkage groups (LGs). Therefore, using marker segregation data for 10 RILs and one BC population from the international groundnut community, with the help of common markers across different populations, a reference consensus genetic map has been developed. This map is comprised of 897 marker loci including 895 simple sequence repeat (SSR) and 2 cleaved amplified polymorphic sequence (CAPS) loci distributed on 20 LGs (a01–a10 and b01–b10) spanning a map distance of 3, 863.6 cM with an average map density of 4.4 cM. The highest numbers of markers (70) were integrated on a01 and the least number of markers (21) on b09. The marker density, however, was lowest (6.4 cM) on a08 and highest (2.5 cM) on a01. The reference consensus map has been divided into 20 cM long 203 BINs. These BINs carry 1 (a10_02, a10_08 and a10_09) to 20 (a10_04) loci with an average of 4 marker loci per BIN. Although the polymorphism information content (PIC) value was available for 526 markers in 190 BINs, 36 and 111 BINs have at least one marker with >0.70 and >0.50 PIC values, respectively. This information will be useful for selecting highly informative and uniformly distributed markers for developing new genetic maps, background selection and diversity analysis. Most importantly, this reference consensus map will serve as a reliable reference for aligning new genetic and physical maps, performing QTL analysis in a multi-populations design, evaluating the genetic background effect on QTL expression, and serving other genetic and molecular breeding activities in groundnut

    Marker-Assisted Selection for Biotic Stress Resistance in Peanut

    No full text
    Marker-assisted selection (MAS) in peanut has lagged behind other major crops. This is due in good part to the genetic bottleneck that occurred at tetraploidization, resulting in a limited amount of molecular variability detectable among accessions of the cultivated species. However, marker maps have been developed from wild species, and, to an increasing extent, the cultivated species using new marker types. It is expected that, with the increase in number of simple sequence repeat (SSR) markers and development of single nucleotide polymorphism (SNP)-based markers, there will be greater use of MAS in both interspecific and cultivated accession crosses. MAS has already proven itself to be useful in developing cultivars possessing resistance to the root-knot nematode, and is being used for selection for resistance to late leaf spot and rust, as well as for the high-oleic-acid trait
    corecore