41 research outputs found

    Intrinsic photosensitive retinal ganglion cells in the diurnal rodent, Arvicanthis ansorgei.

    Get PDF
    Intrinsically photosensitive retinal ganglion cells (ipRGCs) represent a new class of photoreceptors which support a variety of non-image forming physiological functions, such as circadian photoentrainment, pupillary light reflex and masking responses to light. In view of the recently proposed role of retinal inputs for the regulation of diurnal and nocturnal behavior, we performed the first deep analysis of the ipRGC system in a diurnal rodent model, Arvicanthisansorgei, and compared the anatomical and physiological properties of ipRGCs with those of nocturnal mice. Based on somata location, stratification pattern and melanopsin expression, we identified two main ipRGC types in the retina of Arvicanthis: M1, constituting 74% of all ipRGCs and non-M1 (consisting mainly of the M2 type) constituting the following 25%. The displaced ipRGCs were rarely encountered. Phenotypical staining patterns of ganglion cell markers showed a preferential expression of Brn3 and neurofilaments in non-M1 ipRGCs. In general, the anatomical properties and molecular phenotyping of ipRGCs in Arvicanthis resemble ipRGCs of the mouse retina, however the percentage of M1 cells is considerably higher in the diurnal animal. Multi-electrode array recordings (MEA) identified in newborn retinas of Arvicanthis three response types of ipRGCs (type I, II and III) which are distinguished by their light sensitivity, response strength, latency and duration. Type I ipRGCs exhibited a high sensitivity to short light flashes and showed, contrary to mouse type I ipRGCs, robust light responses to 10 ms flashes. The morphological, molecular and physiological analysis reveals very few differences between mouse and Arvicanthis ipRGCs. These data imply that the influence of retinal inputs in defining the temporal niche could be related to a stronger cone input into ipRGCs in the cone-rich Arvicanthis retina, and to the higher sensitivity of type I ipRGCs and elevated proportion of M1 cells.journal articleresearch support, non-u.s. gov't20132013 08 09importedFunding: Research was carried out within the scope of the Associated European Laboratory “European Laboratory for Circadian Research”, LEA CNRS-UdS-MPG (LEA No. 367) funded by the Max Planck Society, München, and CNRS, Paris. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The Impact of Macroprudential Housing Finance Tools in Canada: 2005-10

    Full text link
    This paper combines loan-level administrative data with household-level survey data to analyze the impact of recent macroprudential policy changes in Canada using a microsimulation model of mortgage demand of first-time homebuyers. Policies targeting the loan-to-value ratio are found to have a larger impact than policies targeting the debtservice ratio, such as amortization. This is because there are more wealth-constrained borrowers than income-constrained borrowers entering the housing market

    Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics

    Get PDF
    The assessment of oocyte quality in human in vitro fertilization (IVF) is getting increasing attention from embryologists. Oocyte selection and the identification of the best oocytes, in fact, would help to limit embryo overproduction and to improve the results of oocyte cryostorage programs. Follicular fluid (FF) is easily available during oocyte pick-up and theorically represents an optimal source on non-invasive biochemical predictors of oocyte quality. Unfortunately, however, the studies aiming to find a good molecular predictor of oocyte quality in FF were not able to identify substances that could be used as reliable markers of oocyte competence to fertilization, embryo development and pregnancy. In the last years, a well definite trend toward passing from the research of single molecular markers to more complex techniques that study all metabolites of FF has been observed. The metabolomic approach is a powerful tool to study biochemical predictors of oocyte quality in FF, but its application in this area is still at the beginning. This review provides an overview of the current knowledge about the biochemical predictors of oocyte quality in FF, describing both the results coming from studies on single biochemical markers and those deriving from the most recent studies of metabolomic
    corecore