66,266 research outputs found

    Performance tests of a single-cylinder compression-ignition engine with a displacer piston

    Get PDF
    Engine performance was investigated using a rectangular displacer on the piston crown to cause a forced air flow in a vertical-disk combustion chamber of a single-cylinder, 4-stroke-cycle compression-ignition engine. The optimum air-flow area was determined first with the area concentrated at one end of the displacer and then with the area equally divided between two passages, one at each end of the displacer. Best performance was obtained with the two-passage air flow arranged to give a calculated maximum air-flow speed of 8 times the linear crank-pin speed. With the same fuel-spray formation as used without the air flow, the maximum clear exhaust brake mean effective pressure at 1,500 r.p.m. was increased from 90 to 115 pounds per square inch and the corresponding fuel consumption reduced from 0.46 to 0.43 pound per brake horsepower-hour. At 1,200 r.p.m., a maximum clear exhaust brake mean effective pressure of 120 pounds per square inch was obtained at a fuel consumption of 0.42 pound per brake horsepower-hour. At higher specific fuel consumption the brake mean effective pressure was still increasing rapidly

    The Effect of Connecting-passage Diameter on the Performance of a Compression-ignition Engine with a Precombustion Chamber

    Get PDF
    Results of motoring tests are presented showing the effect of passage diameter on chamber and cylinder compression pressures, maximum pressure differences, and f.m.e.p. over a speed range from 300 to 1,750 r.p.m. Results of engine performance tests are presented which show the effect of passage diameter on m.e.p., explosion pressures, specific fuel consumption, and rates of pressure rise for a range of engine speeds from 500 to 1,500 r.p.m. The cylinder compression pressure, the maximum pressure difference, and the f.m.e.p. decreased rapidly as the passage diameter increased to 29/64 inch, whereas further increase in passage diameter effected only a slight change. The most suitable passage diameter for good engine performance and operating characteristics was 29/64 inch. Passage diameter became less critical with a decrease in engine speed. Therefore, the design should be based on maximum operating speed. Optimum performance and satisfactory combustion control could not be obtained by means of any single diameter of the connecting passage

    The Effect of Clearance Distribution on the Performance of a Compression-ignition Engine with a Precombustion Chamber

    Get PDF
    The clearance distribution in a precombustion chamber cylinder head was varied so that for a constant compression ratio of 13.5 the spherical auxiliary chambers contained 20, 35, 50, and 70 per cent of the total clearance volume. Each chamber was connected to the cylinder by a single circular passage, flared at both ends, and of a cross-sectional area proportional to the chamber volume, thereby giving the same calculated air-flow velocity through each passage. Results of engine-performance tests are presented with variations of power, fuel consumption, explosion pressure, rate of pressure rise, ignition lag, heat loss to the cooling water, and motoring characteristics. For good performance the minimum auxiliary chamber volume, with the cylinder head design used, was 35 per cent of the total clearance volume; for larger volumes the performance improves but slightly. With the auxiliary chamber that contained 35 percent of the clearance volume there were obtained the lowest explosion pressures, medium rates of pressure rise, and slightly less than the maximum power. For all clearance distributions an increase in engine speed decreased the ignition lag in seconds and increased the rate of pressure rise

    Exploring constrained quantum control landscapes

    Full text link
    The broad success of optimally controlling quantum systems with external fields has been attributed to the favorable topology of the underlying control landscape, where the landscape is the physical observable as a function of the controls. The control landscape can be shown to contain no suboptimal trapping extrema upon satisfaction of reasonable physical assumptions, but this topological analysis does not hold when significant constraints are placed on the control resources. This work employs simulations to explore the topology and features of the control landscape for pure-state population transfer with a constrained class of control fields. The fields are parameterized in terms of a set of uniformly spaced spectral frequencies, with the associated phases acting as the controls. Optimization results reveal that the minimum number of phase controls necessary to assure a high yield in the target state has a special dependence on the number of accessible energy levels in the quantum system, revealed from an analysis of the first- and second-order variation of the yield with respect to the controls. When an insufficient number of controls and/or a weak control fluence are employed, trapping extrema and saddle points are observed on the landscape. When the control resources are sufficiently flexible, solutions producing the globally maximal yield are found to form connected `level sets' of continuously variable control fields that preserve the yield. These optimal yield level sets are found to shrink to isolated points on the top of the landscape as the control field fluence is decreased, and further reduction of the fluence turns these points into suboptimal trapping extrema on the landscape. Although constrained control fields can come in many forms beyond the cases explored here, the behavior found in this paper is illustrative of the impacts that constraints can introduce.Comment: 10 figure
    corecore