1,529 research outputs found

    Basic obstacle for electrical spin-injection from a ferromagnetic metal into a diffusive semiconductor

    Get PDF
    We have calculated the spin-polarization effects of a current in a two dimensional electron gas which is contacted by two ferromagnetic metals. In the purely diffusive regime, the current may indeed be spin-polarized. However, for a typical device geometry the degree of spin-polarization of the current is limited to less than 0.1%, only. The change in device resistance for parallel and antiparallel magnetization of the contacts is up to quadratically smaller, and will thus be difficult to detect.Comment: Revtex, 4 pages, 3 figures (eps), Definition of spin pilarization changed to standard definition in GMR, some straight forward algebra removed. To appear as PRB Rap. Comm. August 15t

    Co-ordination between Rashba spin-orbital interaction and space charge effect and enhanced spin injection into semiconductors

    Full text link
    We consider the effect of the Rashba spin-orbital interaction and space charge in a ferromagnet-insulator/semiconductor/insulator-ferromagnet junction where the spin current is severely affected by the doping, band structure and charge screening in the semiconductor. In diffusion region, if the the resistance of the tunneling barriers is comparable to the semiconductor resistance, the magnetoresistance of this junction can be greatly enhanced under appropriate doping by the co-ordination between the Rashba effect and screened Coulomb interaction in the nonequilibrium transport processes within Hartree approximation.Comment: 4 pages, 3 figure

    Diffuse transport and spin accumulation in a Rashba two-dimensional electron gas

    Full text link
    The Rashba Hamiltonian describes the splitting of the conduction band as a result of spin-orbit coupling in the presence of an asymmetric confinement potential and is commonly used to model the electronic structure of confined narrow-gap semiconductors. Due to the mixing of spin states some care has to be exercised in the calculation of transport properties. We derive the diffusive conductance tensor for a disordered two-dimensional electron gas with spin-orbit interaction and show that the applied bias induces a spin accumulation, but that the electric current is not spin-polarized.Comment: REVTeX4 format, 5 page

    A user-centred approach to design Transport Interchange Hubs (TIH): A discussion illustrated by a case study in the Russian Arctic

    Get PDF
    This paper proposes a user-centred approach to design Transport In-terchange Hubs (TIH). It is based on a literature review of existing information related to TIHs outside the domain of transport engineering, so the focus is on the building and the usage of it by its main customers: the travellers. A literature review is used to extract high level information on travellers’ needs, technical and functional requirements of TIHs, constraints and design parameters. A prod-uct development approach is used to classify and combine this data so a proper set of design specifications to better address users’ needs is proposed. The method is illustrated through an example in the Russian Arctic, an area with un-der-developed transport facilities for travellers which would benefit from high-level design specifications to address complex needs, requirements and parame-ters involved in designing for extreme climate conditions. A proof of concept, using Axiomatic Design, to develop design specifications and manage constraints is applied and discussed considering major needs involved in building in the Rus-sian Arctic including how different types of simulation tools, essential to assess performance of complex buildings, can be integrated in the early stages of the design workflow. Robust specifications, despite being part of parametric design methods, are underexplored in the architecture design domain, meaning this work can contribute to further research in how to define common design targets and objectives for different stakeholders as well as to manage the collaborative work of consultants involved in designing complex buildings

    Agricultural intensification can help protect the Amazon Forest and reduce global warming / Protecting the Amazon forest and reducing global warming via agricultural intensification

    Get PDF
    The Amazon basin includes 550 M ha covered with rainforests, with 60% of this area being in Brazil. Conversion of rainforest for soybean production raises concerns about the degree to which Brazil can reconcile production and environmental goals. Here we investigated the degree to which intensification could help Brazil produce more soybean without further encroachment of the Amazon Forest. Our analysis shows that continuation of current trends in soybean yield and area would lead to conversion of additional 5.7 M ha of forests and savannas during the next 15 years, with an associated 2550 Mt of CO2eq released into the atmosphere. In contrast, acceleration of yield improvement, coupled with expansion of soybean area only in areas currently used for livestock production, would allow Brazil to achieve similar economic benefits without deforestation and with substantially lower global climate warming

    Optical Pumping in Ferromagnet-Semiconductor Heterostructures: Magneto-optics and Spin Transport

    Full text link
    Epitaxial ferromagnetic metal - semiconductor heterostructures are investigated using polarization-dependent electroabsorption measurements on GaAs p-type and n-type Schottky diodes with embedded In1-xGaxAs quantum wells. We have conducted studies as a function of photon energy, bias voltage, magnetic field, and excitation geometry. For optical pumping with circularly polarized light at energies above the band edge of GaAs, photocurrents with spin polarizations on the order of 1 % flow from the semiconductor to the ferromagnet under reverse bias. For optical pumping at normal incidence, this polarization may be enhanced significantly by resonant excitation at the quantum well ground-state. Measurements in a side-pumping geometry, in which the ferromagnet can be saturated in very low magnetic fields, show hysteresis that is also consistent with spin-dependent transport. Magneto-optical effects that influence these measurements are discussed.Comment: PDF, 4 figures, 1 tabl

    Spin injection and spin accumulation in all-metal mesoscopic spin valves

    Get PDF
    We study the electrical injection and detection of spin accumulation in lateral ferromagnetic metal-nonmagnetic metal-ferromagnetic metal (F/N/F) spin valve devices with transparent interfaces. Different ferromagnetic metals, permalloy (Py), cobalt (Co) and nickel (Ni), are used as electrical spin injectors and detectors. For the nonmagnetic metal both aluminium (Al) and copper (Cu) are used. Our multi-terminal geometry allows us to experimentally separate the spin valve effect from other magneto resistance signals such as the anomalous magneto resistance (AMR) and Hall effects. We find that the AMR contribution of the ferromagnetic contacts can dominate the amplitude of the spin valve effect, making it impossible to observe the spin valve effect in a 'conventional' measurement geometry. In a 'non local' spin valve measurement we are able to completely isolate the spin valve signal and observe clear spin accumulation signals at T=4.2 K as well as at room temperature (RT). For aluminum we obtain spin relaxation lengths (lambda_{sf}) of 1.2 mu m and 600 nm at T=4.2 K and RT respectively, whereas for copper we obtain 1.0 mu m and 350 nm. The spin relaxation times tau_{sf} in Al and Cu are compared with theory and results obtained from giant magneto resistance (GMR), conduction electron spin resonance (CESR), anti-weak localization and superconducting tunneling experiments. The spin valve signals generated by the Py electrodes (alpha_F lambda_F=0.5 [1.2] nm at RT [T=4.2 K]) are larger than the Co electrodes (alpha_F lambda_F=0.3 [0.7] nm at RT [T=4.2 K]), whereas for Ni (alpha_F lambda_F<0.3 nm at RT and T=4.2 K) no spin signal is observed. These values are compared to the results obtained from GMR experiments.Comment: 16 pages, 12 figures, submitted to PR

    Molecular Biomarkers for the Evaluation of Colorectal Cancer

    Get PDF
    Objectives: To develop evidence-based guideline recommendations through a systematic review of the literature to establish standard molecular biomarker testing of colorectal cancer (CRC) tissues to guide epidermal growth factor receptor (EGFR) therapies and conventional chemotherapy regimens

    Molecular Biomarkers for the Evaluation of Colorectal Cancer: Guideline From the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology

    Get PDF
    OBJECTIVES: - To develop evidence-based guideline recommendations through a systematic review of the literature to establish standard molecular biomarker testing of colorectal cancer (CRC) tissues to guide epidermal growth factor receptor (EGFR) therapies and conventional chemotherapy regimens. METHODS: - The American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology convened an expert panel to develop an evidence-based guideline to establish standard molecular biomarker testing and guide therapies for patients with CRC. A comprehensive literature search that included more than 4,000 articles was conducted. RESULTS: - Twenty-one guideline statements were established. CONCLUSIONS: - Evidence supports mutational testing for EGFR signaling pathway genes, since they provide clinically actionable information as negative predictors of benefit to anti-EGFR monoclonal antibody therapies for targeted therapy of CRC. Mutations in several of the biomarkers have clear prognostic value. Laboratory approaches to operationalize CRC molecular testing are presented
    corecore