10 research outputs found

    The somatostatin analogue octreotide confers sensitivity to rapamycin treatment on pituitary tumor cells

    Get PDF
    Rapamycin and its analogues have significant antiproliferative action against a variety of tumors. However, sensitivity to rapamycin is reduced by Akt activation that results from the ablative effects of rapamycin on a p70 S6K-induced negative feedback loop that blunts phosphoinositide 3-kinase (PI3K)-mediated support for Akt activity. Thus, sensitivity to rapamycin might be increased by imposing an upstream blockade to the PI3K/Akt pathway. Here, we investigated this model using the somatostatin analogue octreotide as a tool to decrease levels of activated Ser(473)-phosphorylated Akt (pAkt-Ser(473)) in pituitary tumor cells that express somatostatin receptors. Octreotide increased levels of phosphorylated insulin receptor substrate-1 that were suppressed by rapamycin, subsequently decreasing levels of pAkt-Ser(473) through effects on phosphotyrosine phosphatase SHP-1. Octreotide potentiated the antiproliferative effects of rapamycin in immortalized pituitary tumor cells or human nonfunctioning pituitary adenoma cells in primary cell culture, sensitizing tumor cells even to low rapamycin concentrations. Combined treatment of octreotide and rapamycin triggered G(1) cell cycle arrest, decreasing E2F transcriptional activity and cyclin E levels by increasing levels of p27/Kip1. These findings show that adjuvant treatment with a somatostatin analogue can sensitize pituitary tumor cells to the antiproliferative effects of rapamycin

    Heat Shock Protein 90 as a Prognostic Marker and Therapeutic Target for Adrenocortical Carcinoma

    Get PDF
    Background: Adrenocortical carcinoma (ACC) is a rare tumor entity with restricted therapeutic opportunities. HSP90 (Heat Shock Protein 90) chaperone activity is fundamental for cell survival and contributes to different oncogenic signaling pathways. Indeed, agents targeting HSP90 function have shown therapeutic efficacy in several cancer types. We have examined the expression of HSP90 in different adrenal tumors and evaluated the use of HSP90 inhibitors in vitro as possible therapy for ACC. Methods: Immunohistochemical expression of HSP90 isoforms was investigated in different adrenocortical tumors and associated with clinical features. Additionally, a panel of N-terminal (17-allylamino-17-demethoxygeldanamycin (17-AAG), luminespib, and ganetespib) and C-terminal (novobiocin and silibinin) HSP90 inhibitors were tested on various ACC cell lines. Results: Within adrenocortical tumors, ACC samples exhibited the highest expression of HSP90β. Within a cohort of ACC patients, HSP90β expression levels were inversely correlated with recurrence-free and overall survival. In functional assays, among five different compounds tested luminespib and ganetespib induced a significant decrease in cell viability in single as well as in combined treatments with compounds of the clinically used EDP-M scheme (etoposide, doxorubicin, cisplatin, mitotane). Inhibition of cell viability correlated furthermore with a decrease in proliferation, in cell migration and an increase in apoptosis. Moreover, analysis of cancer pathways indicated a modulation of the ERK1/2—and AKT—pathways by luminespib and ganetespib treatment. Conclusions: Our findings emphasize HSP90 as a marker with prognostic impact and promising target with N-terminal HSP90 inhibitors as drugs with potential therapeutic efficacy toward ACC

    Sirt1 inhibits the transcription factor CREB to regulate pituitary growth hormone synthesis

    No full text
    Growth hormone (GH) is a major anabolic hormone and the primary regulator of organism growth. Its transcription is triggered by GH-releasing hormone (GHRH) through the transcription factor cAMP response element-binding protein (CREB) and by caloric intake. In contrast, the deacetylase Sirt1 is activated by caloric restriction. Therefore, the present study investigates how Sirt1 affects CREB function and GH synthesis. Sirt1 pharmacological activation with resveratrol (IC50 =87 mu M) suppressed GHRH-induced GH secretion from rat anterior pituitary cells in vivo and in vitro, while vehicle controls showed no effect. Resveratrol's effects were abolished after knocking down Sirt1 with RNA interference, but not in control scrambled siRNA-transfected rat somatotrophs, confirming the Sirt1 specificity. Sirt1 activation and overexpression suppressed forskolin-induced CREB-Ser(133) phosphorylation, but no effect was seen with vehicle and empty plasmid controls. The deacetylase-dead mutant Sirt1 retained CREB-Ser133 phosphorylation by keeping protein phosphatase protein phosphatase 1 activity low. Sirt1 activation suppressed glycogen synthase kinase 3 beta acetylation, and a mutation on the GSK3 beta-Lys(205) residue mimicking a hypoacetylated form revealed increased activity. In summary, this is a novel mechanism through which Sirt1 intercepts the cAMP pathway by suppressing CREB transcriptional activation, resulting in decreased GH synthesis.-Monteserin-Garcia, J., Al-Massadi, O., Seoane, L. M., Alvarez, C. V., Shan, B., Stalla, J., Paez-Pereda, M., Casanueva, F. F., Stalla, G. K., Theodoropoulou, M. Sirt1 inhibits the transcription factor CREB to regulate pituitary growth hormone synthesis

    The glucose-dependent insulinotropic polypeptide receptor (GIPR) is overexpressed amongst GNAS1 mutation-negative somatotropinomas and drives GH-promoter activity in GH3 cells.

    No full text
    none15Somatic mutations in the GNAS1 gene, encoding the a-subunit of the heterotrimeric stimulatory G protein (Gas), occur in approximately 40% of growth hormone (GH)-secreting pituitary tumours. By altering the adenylate cyclase-cAMP-protein kinase A pathway, they unequivocally give somatotroph cells a growth advantage. Hence, the pathogenesis of somatotropinomas could be linked to anomalies in receptors coupled to the cAMP second-messenger cascade. Among them, the glucose-dependent insulinotropic polypeptide receptor (GIPR) is already known to play a primary role in the impaired cAMP-dependent cortisol secretion in patients affected by food-dependent Cushing's syndrome. In the present study, 43 somatotropinomas and 12 normal pituitary glands were investigated for GIPR expression by quantitative reverse transcriptase-polymerase chain reaction, western blotting and immunohistochemistry. Tumoural specimens were also evaluated for GNAS1 mutational status. The effect of GIPR overexpression on cAMP levels and GH transcription was evaluated in an in vitro model of somatotropinomas, the GH-secreting pituitary cell line GH3. GIPR was expressed at higher levels compared to normal pituitaries in 13 GNAS1 mutation-negative somatotropinomas. GIP stimulated adenylyl cyclase and GH-promoter activity in GIPR-transfected GH3 cells, confirming a correct coupling of GIPR to Gas. In a proportion of acromegalic patients, GIPR overexpression appeared to be associated with a paradoxical increase in GH after an oral glucose tolerance test. Whether GIPR overexpression in acromegalic patients may be associated with this paradoxical response or more generally involved in the pathogenesis of acromegaly, as suggested by the mutually exclusive high GIPR levels and GNAS1 mutations, remains an open question.openOCCHI G; LOSA M; ALBIGER N; TRIVELLIN G; REGAZZO D; SCANARINI M; MONTESERIN-GARCIA J; FROEHLICH B; FERASIN S; TERRENI M; FASSINA A; VITIELLO L; STALLA G; MANTERO F; C. SCARONIOcchi, Gianluca; Losa, M; Albiger, NORA MARIA ELVIRA; Trivellin, Giampaolo; Regazzo, Daniela; Scanarini, M; MONTESERIN GARCIA, J; Froehlich, B; Ferasin, Sergio; Terreni, M; Fassina, Ambrogio; Vitiello, Libero; Stalla, G; Mantero, Franco; Scaroni, Carl
    corecore