621 research outputs found

    Supersymmetric Quantization of Anisotropic Scalar-Tensor Cosmologies

    Get PDF
    In this paper we show that the spatially homogeneous Bianchi type I and Kantowski-Sachs cosmologies derived from the Brans-Dicke theory of gravity admit a supersymmetric extension at the quantum level. Global symmetries in the effective one-dimensional actions characterize both classical and quantum solutions. A wide family of exact wavefunctions satisfying the supersymmetric constraints are found. A connection with quantum wormholes is briefly discussed.Comment: In Press, Class. Quantum Grav. 20 pages, Late

    Higher order corrections to Heterotic M-theory inflation

    Full text link
    We investigate inflation driven by NN dynamical five-branes in Heterotic M-theory using the scalar potential derived from the open membrane instanton sector. At leading order the resulting theory can be mapped to power law inflation, however more generally one may expect higher order corrections to be important. We consider a simple class of such corrections, which imposes tight bounds on the number of branes required for inflation.Comment: 10 pages, 2 figure

    Correlation Effects in Nuclear Transparency

    Get PDF
    The Glauber approximation is used to calculate the contribution of nucleon correlations in high-energy A(e,eN)A(e,e'N) reactions. When the excitation energy of the residual nucleus is small, the increase of the nuclear transparency due to correlations between the struck nucleon and the other nucleons is mostly compensated by a decrease of the transparency due to the correlations between non detected nucleons. We derive Glauber model predictions for nuclear transparency for the differential cross section when nuclear shell level excitations are measured. The role of correlations in color transparency is briefly discussed.Comment: 24 pages revtex, 4 uuencoded PostScript Figures as separate fil

    Dust-filled axially symmetric universes with a cosmological constant

    Get PDF
    Following the recent recognition of a positive value for the vacuum energy density and the realization that a simple Kantowski-Sachs model might fit the classical tests of cosmology, we study the qualitative behavior of three anisotropic and homogeneous models: Kantowski-Sachs, Bianchi type-I and Bianchi type-III universes, with dust and a cosmological constant, in order to find out which are physically permitted. We find that these models undergo isotropization up to the point that the observations will not be able to distinguish between them and the standard model, except for the Kantowski-Sachs model (Ωk00)(\Omega_{k_{0}}0) with ΩΛ0\Omega_{\Lambda_{0}} smaller than some critical value ΩΛM\Omega_{\Lambda_{M}}. Even if one imposes that the Universe should be nearly isotropic since the last scattering epoch (z1000z\approx 1000), meaning that the Universe should have approximately the same Hubble parameter in all directions (considering the COBE 4-Year data), there is still a large range for the matter density parameter compatible with Kantowsky-Sachs and Bianchi type-III if Ω0+ΩΛ01δ|\Omega_0+\Omega_{\Lambda_0}-1|\leq \delta, for a very small δ\delta . The Bianchi type-I model becomes exactly isotropic owing to our restrictions and we have Ω0+ΩΛ0=1\Omega_0+\Omega_{\Lambda_0}=1 in this case. Of course, all these models approach locally an exponential expanding state provided the cosmological constant ΩΛ>ΩΛM\Omega_\Lambda>\Omega_{\Lambda_{M}}.Comment: 12 pages, 9 figures, 1 table. Published in Physical Review D 1

    Anisotropic Power-law Inflation

    Full text link
    We study an inflationary scenario in supergravity model with a gauge kinetic function. We find exact anisotropic power-law inflationary solutions when both the potential function for an inflaton and the gauge kinetic function are exponential type. The dynamical system analysis tells us that the anisotropic power-law inflation is an attractor for a large parameter region.Comment: 14 pages, 1 figure. References added, minor corrections include

    Nuclear Attenuation of high energy two-hadron system in the string model

    Get PDF
    Nuclear attenuation of the two-hadron system is considered in the string model. The two-scale model and its improved version with two different choices of constituent formation time and sets of parameters obtained earlier for the single hadron attenuation, are used to describe available experimental data for the zz-dependence of subleading hadron, whereas satisfactory agreement with the experimental data has been observed. A model prediction for ν\nu-dependence of the nuclear attenuation of the two-hadron system is also presented.Comment: 8 page

    Delta Excitations in Neutrino-Nucleus Scattering

    Get PDF
    We derive the contribution of Δ\Delta-h excitations to quasielastic charged-current neutrino-nucleus scattering in the framework of relativistic mean-field theory. We discuss the effect of Δ\Delta production on the determination of the axial mass MAM_A in neutrino scattering experiments.Comment: 14 pages, revtex, 3 postscript figures (available upon request
    corecore