187 research outputs found

    Strangeness Enhancement in p+Ap+A and S+AS+A Interactions at SPS Energies

    Full text link
    The systematics of strangeness enhancement is calculated using the HIJING and VENUS models and compared to recent data on pp\,pp\,, pA\,pA\, and AA\,AA\, collisions at CERN/SPS energies (200AGeV200A\,\, GeV\,). The HIJING model is used to perform a {\em linear} extrapolation from pppp to AAAA. VENUS is used to estimate the effects of final state cascading and possible non-conventional production mechanisms. This comparison shows that the large enhancement of strangeness observed in S+AuS+Au collisions, interpreted previously as possible evidence for quark-gluon plasma formation, has its origins in non-equilibrium dynamics of few nucleon systems. % Strangeness enhancement %is therefore traced back to the change in the production dynamics %from pppp to minimum bias pSpS and central SSSS collisions. A factor of two enhancement of Λ0\Lambda^{0} at mid-rapidity is indicated by recent pSpS data, where on the average {\em one} projectile nucleon interacts with only {\em two} target nucleons. There appears to be another factor of two enhancement in the light ion reaction SSSS relative to pSpS, when on the average only two projectile nucleons interact with two target ones.Comment: 29 pages, 8 figures in uuencoded postscript fil

    The meeting problem in the quantum random walk

    Full text link
    We study the motion of two non-interacting quantum particles performing a random walk on a line and analyze the probability that the two particles are detected at a particular position after a certain number of steps (meeting problem). The results are compared to the corresponding classical problem and differences are pointed out. Analytic formulas for the meeting probability and its asymptotic behavior are derived. The decay of the meeting probability for distinguishable particles is faster then in the classical case, but not quadratically faster. Entangled initial states and the bosonic or fermionic nature of the walkers are considered

    Measurement of the Proton's Neutral Weak Magnetic Form Factor

    Get PDF
    We report the first measurement of the parity-violating asymmetry in elastic electron scattering from the proton. The asymmetry depends on the neutral weak magnetic form factor of the proton which contains new information on the contribution of strange quark-antiquark pairs to the magnetic moment of the proton. We obtain the value GMZ=0.34±0.09±0.04±0.05G_M^Z= 0.34 \pm 0.09 \pm 0.04 \pm 0.05 n.m. at Q2=0.1Q^2=0.1 (GeV/c)2{}^2.Comment: 4 pages TEX, text available at http://www.krl.caltech.edu/preprints/OAP.htm

    Comparative Analysis of the Mechanisms of Fast Light Particle Formation in Nucleus-Nucleus Collisions at Low and Intermediate Energies

    Full text link
    The dynamics and the mechanisms of preequilibrium-light-particle formation in nucleus-nucleus collisions at low and intermediate energies are studied on the basis of a classical four-body model. The angular and energy distributions of light particles from such processes are calculated. It is found that, at energies below 50 MeV per nucleon, the hardest section of the energy spectrum is formed owing to the acceleration of light particles from the target by the mean field of the projectile nucleus. Good agreement with available experimental data is obtained.Comment: 23 pages, 10 figures, LaTeX, published in Physics of Atomic Nuclei v.65, No. 8, 2002, pp. 1459 - 1473 translated from Yadernaya Fizika v. 65, No. 8, 2002, pp. 1494 - 150

    Exclusive electroproduction of K+ Lambda and K+ Sigma^0 final states at Q^2 = 0.030-0.055 (GeV/c)^2

    Get PDF
    Cross section measurements of the exclusive p(e,e'K+)Lambda,Sigma^0 electroproduction reactions have been performed at the Mainz Microtron MAMI in the A1 spectrometer facility using for the first time the Kaos spectrometer for kaon detection. These processes were studied in a kinematical region not covered by any previous experiment. The nucleon was probed in its third resonance region with virtual photons of low four-momenta, Q^2= 0.030-0.055 (GeV/c)^2. The MAMI data indicate a smooth transition in Q^2 from photoproduction to electroproduction cross sections. Comparison with predictions of effective Lagrangian models based on the isobar approach reveal that strong longitudinal couplings of the virtual photon to the N* resonances can be excluded from these models.Comment: 16 pages, 7 figure

    Effects of dissipation on quantum phase transitions

    Full text link
    We discuss the effect of dissipation on quantum phase transitions. In particular we concentrate on the Superconductor to Insulator and Quantum-Hall to Insulator transitions. By invoking a phenomenological parameter α\alpha to describe the coupling of the system to a continuum of degrees of freedom representing the dissipative bath, we obtain new phase diagrams for the quantum Hall and superconductor-insulator problems. Our main result is that, in two-dimensions, the metallic phases observed in finite magnetic fields (possibly also strictly zero field) are adiabatically deformable from one to the other. This is plausible, as there is no broken symmetry which differentiates them.Comment: 13 pages, 4 figure

    A Framework for Verifying Data-Centric Protocols

    Get PDF
    International audienceData centric languages, such as recursive rule based languages, have been proposed to program distributed applications over networks. They simplify greatly the code, while still admitting efficient distributed execution. We show that they also provide a promising approach to the verification of distributed protocols, thanks to their data centric orientation, which allows us to explicitly handle global structures such as the topology of the network. We consider a framework using an original formalization in the Coq proof assistant of a distributed computation model based on message passing with either synchronous or asynchronous behavior. The declarative rules of the Netlog language for specifying distributed protocols and the virtual machines for evaluating these rules are encoded in Coq as well. We consider as a case study tree protocols, and show how this framework enables us to formally verify them in both the asynchronous and synchronous setting
    corecore