404 research outputs found

    Chthonius (Chthonius) carinthiacus and Chthonius (Ephippiochthonius) tuberculatus new to the fauna of Slovakia (Pseudoscorpiones: Chthoniidae)

    Get PDF
    The pseudoscorpions Chthonius (Chthonius) carinthiacus Beier, 1951 and Chthonius (Ephippiochthonius) tuberculatus Hadži, 1937, are recorded for the first time from Slovakia. An illustrated description of these species is provided based on their morphological and morphometric characters. The descriptions of the species offer an update on the variability of their morphological and morphometric characters

    The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo

    Get PDF
    Muthuramalingam M, Matros A, Scheibe R, Mock H-P, Dietz K-J. The hydrogen peroxide-sensitive proteome of the chloroplast in vitro and in vivo. Frontiers in Plant Science. 2013;4:54-1-54-14.Hydrogen peroxide (H2O2) evolves during cellular metabolism and accumulates under various stresses causing serious redox imbalances. Many proteomics studies aiming to identify proteins sensitive to H2O2 used concentrations that were above the physiological range. Here the chloroplast proteins were subjected to partial oxidation by exogenous addition of H2O2 equivalent to 10% of available protein thiols which allowed for the identification of the primary targets of oxidation. The chosen redox proteomic approach employed differential labeling of non-oxidized and oxidized thiols using sequential alkylation with N-ethylmaleimide and biotin maleimide. The in vitro identified proteins are involved in carbohydrate metabolism, photosynthesis, redox homeostasis, and nitrogen assimilation. By using methyl viologen that induces oxidative stress in vivo, mostly the same primary targets of oxidation were identified and several oxidation sites were annotated. Ribulose-1,5-bisphosphate (RubisCO) was a primary oxidation target. Due to its high abundance, RubisCO is suggested to act as a chloroplast redox buffer to maintain a suitable redox state, even in the presence of increased reactive oxygen species release. 2-cysteine peroxiredoxins (2-Cys Prx) undergo redox-dependent modifications and play important roles in antioxidant defense and signaling. The identification of 2-Cys Prx was expected based on its high affinity to H2O2 and is considered as a proof of concept for the approach. Targets of Trx, such as phosphoribulokinase, glyceraldehyde-3-phosphate dehydrogenase, transketolase, and sedoheptulose-1,7-bisphosphatase have at least one regulatory disulfide bridge which supports the conclusion that the identified proteins undergo reversible thiol oxidation. In conclusion, the presented approach enabled the identification of early targets of H2O2 oxidation within the cellular proteome under physiological experimental conditions

    Evaluating Restricted First-Order Counting Properties on Nowhere Dense Classes and Beyond

    Get PDF

    The low molecular weight fraction of compounds released from immature wheat pistils supports barley pollen embryogenesis

    Get PDF
    Pollen embryogenesis provides a useful means of generating haploid plants for plant breeding and basic research. Although it is well established that the efficacy of the process can be enhanced by the provision of immature pistils as a nurse tissue, the origin and compound class of the signal molecule(s) involved is still elusive. Here, a micro-culture system was established to enable the culturing of populations of barley pollen at a density too low to allow unaided embryogenesis to occur, and this was then exploited to assess the effect of using various parts of the pistil as nurse tissue. A five fold increase in the number of embryogenic calli formed was obtained by simply cutting the pistils in half. The effectiveness of the pistil-conditioned medium was transitory, since it needed replacement at least every four days to measurably ensure embryogenic development. The differential effect of various size classes of compounds present in the pistil-conditioned medium showed that the relevant molecule(s) was of molecular weight below 3 kDa. This work narrows down possible feeder molecules to lower molecular weight compounds and showed that the cellular origin of the active compound(s) is not specific to any tested part of the pistil. Furthermore the increased recovery of calli during treatment with cut pistils may provide a useful tool for plant breeders and researchers using haploid technology in barley and other plant species

    The Online Simple Knapsack Problem with Reservation and Removability

    Get PDF
    In the online simple knapsack problem, a knapsack of unit size 1 is given and an algorithm is tasked to fill it using a set of items that are revealed one after another. Each item must be accepted or rejected at the time they are presented, and these decisions are irrevocable. No prior knowledge about the set and sequence of items is given. The goal is then to maximize the sum of the sizes of all packed items compared to an optimal packing of all items of the sequence. In this paper, we combine two existing variants of the problem that each extend the range of possible actions for a newly presented item by a new option. The first is removability, in which an item that was previously packed into the knapsack may be finally discarded at any point. The second is reservations, which allows the algorithm to delay the decision on accepting or rejecting a new item indefinitely for a proportional fee relative to the size of the given item. If both removability and reservations are permitted, we show that the competitive ratio of the online simple knapsack problem rises depending on the relative reservation costs. As soon as any nonzero fee has to be paid for a reservation, no online algorithm can be better than 1.5-competitive. With rising reservation costs, this competitive ratio increases up to the golden ratio (? ? 1.618) that is reached for relative reservation costs of 1-?5/3 ? 0.254. We provide a matching upper and lower bound for relative reservation costs up to this value. From this point onward, the tight bound by Iwama and Taketomi for the removable knapsack problem is the best possible competitive ratio, not using any reservations

    Delaying Decisions and Reservation Costs

    Full text link
    We study the Feedback Vertex Set and the Vertex Cover problem in a natural variant of the classical online model that allows for delayed decisions and reservations. Both problems can be characterized by an obstruction set of subgraphs that the online graph needs to avoid. In the case of the Vertex Cover problem, the obstruction set consists of an edge (i.e., the graph of two adjacent vertices), while for the Feedback Vertex Set problem, the obstruction set contains all cycles. In the delayed-decision model, an algorithm needs to maintain a valid partial solution after every request, thus allowing it to postpone decisions until the current partial solution is no longer valid for the current request. The reservation model grants an online algorithm the new and additional option to pay a so-called reservation cost for any given element in order to delay the decision of adding or rejecting it until the end of the instance. For the Feedback Vertex Set problem, we first analyze the variant with only delayed decisions, proving a lower bound of 44 and an upper bound of 55 on the competitive ratio. Then we look at the variant with both delayed decisions and reservation. We show that given bounds on the competitive ratio of a problem with delayed decisions impliy lower and upper bounds for the same problem when adding the option of reservations. This observation allows us to give a lower bound of min{1+3α,4}\min{\{1+3\alpha,4\}} and an upper bound of min{1+5α,5}\min{\{1+5\alpha,5\}} for the Feedback Vertex Set problem. Finally, we show that the online Vertex Cover problem, when both delayed decisions and reservations are allowed, is min{1+2α,2}\min{\{1+2\alpha, 2\}}-competitive, where αR0\alpha \in \mathbb{R}_{\geq 0} is the reservation cost per reserved vertex.Comment: 14 Pages, submitte

    Comparative evaluation of extraction methods for apoplastic proteins from maize leaves

    Get PDF
    Proteins in the plant apoplast are essential for many physiological processes. We have analysed and compared six different infiltration solutions for proteins contained in the apoplast to recognize the most suitable method for leaves and to establish proteome maps for each extraction. The efficiency of protocols was evaluated by comparing the protein patterns resolved by 1-DE and 2-DE, and revealed distinct characteristics for each infiltration solution. Nano-LC-ESI-Q-TOF MS analysis of all fractions was applied to cover all proteins differentially extracted by infiltration solutions and led to the identification of 328 proteins in total in apoplast preparations. The predicted subcellular protein localisation distinguished the examined infiltration solutions in those with high or low amounts of intracellular protein contaminations, and with high or low quantities of secreted proteins. All tested infiltration solution extracted different subsets of proteins, and those implications on apoplast-specific studies are discussed

    Cellulose defects in the Arabidopsis secondary cell wall promote early chloroplast development

    Get PDF
    Lincomycin (LIN)‐mediated inhibition of protein synthesis in chloroplasts prevents the greening of seedlings, represses the activity of photosynthesis‐related genes in the nucleus, including LHCB1.2, and induces the phenylpropanoid pathway, resulting in the production of anthocyanins. In genomes uncoupled (gun) mutants, LHCB1.2 expression is maintained in the presence of LIN or other inhibitors of early chloroplast development. In a screen using concentrations of LIN lower than those employed to isolate gun mutants, we have identified happy on lincomycin (holi) mutants. Several holi mutants show an increased tolerance to LIN, exhibiting de‐repressed LHCB1.2 expression and chlorophyll synthesis in seedlings. The mutations responsible were identified by whole‐genome single‐nucleotide polymorphism (SNP) mapping, and most were found to affect the phenylpropanoid pathway; however, LHCB1.2 expression does not appear to be directly regulated by phenylpropanoids, as indicated by the metabolic profiling of mutants. The most potent holi mutant is defective in a subunit of cellulose synthase encoded by IRREGULAR XYLEM 3, and comparative analysis of this and other cell‐wall mutants establishes a link between secondary cell‐wall integrity and early chloroplast development, possibly involving altered ABA metabolism or sensing
    corecore