3 research outputs found

    Synergistic Interactions between the NS3hel and E Proteins Contribute to the Virulence of Dengue Virus Type 1

    Get PDF
    Dengue virus constitutes a significant public health problem in tropical regions of the world. Despite the high morbidity and mortality of this infection, no effective antiviral drugs or vaccines are available for the treatment or prevention of dengue infections. The profile of clinical signs associated with dengue infection has changed in recent years with an increase in the number of episodes displaying unusual signs. We use reverse genetics technology to engineer DENV-1 viruses with subsets of mutations previously identified in highly neurovirulent strains to provide insights into the molecular mechanisms underlying dengue neuropathogenesis. We found that single mutations affecting the E and NS3hel proteins, introduced in a different genetic context, had a synergistic effect increasing DENV replication capacity in human and mosquito derived cells in vitro. We also demonstrated correlations between the presence of these mutations and viral replication efficiency, viral loads, the induction of innate immune response genes and pathogenesis in a mouse model. These results should improve our understanding of the DENV-host cell interaction and contribute to the development of effective antiviral strategies
    corecore