84 research outputs found

    A Genome-Wide Association Study of Psoriasis and Psoriatic Arthritis Identifies New Disease Loci

    Get PDF
    A genome-wide association study was performed to identify genetic factors involved in susceptibility to psoriasis (PS) and psoriatic arthritis (PSA), inflammatory diseases of the skin and joints in humans. 223 PS cases (including 91 with PSA) were genotyped with 311,398 single nucleotide polymorphisms (SNPs), and results were compared with those from 519 Northern European controls. Replications were performed with an independent cohort of 577 PS cases and 737 controls from the U.S., and 576 PSA patients and 480 controls from the U.K.. Strongest associations were with the class I region of the major histocompatibility complex (MHC). The most highly associated SNP was rs10484554, which lies 34.7 kb upstream from HLA-C (P = 7.8×10−11, GWA scan; P = 1.8×10−30, replication; P = 1.8×10−39, combined; U.K. PSA: P = 6.9×10−11). However, rs2395029 encoding the G2V polymorphism within the class I gene HCP5 (combined P = 2.13×10−26 in U.S. cases) yielded the highest ORs with both PS and PSA (4.1 and 3.2 respectively). This variant is associated with low viral set point following HIV infection and its effect is independent of rs10484554. We replicated the previously reported association with interleukin 23 receptor and interleukin 12B (IL12B) polymorphisms in PS and PSA cohorts (IL23R: rs11209026, U.S. PS, P = 1.4×10−4; U.K. PSA: P = 8.0×10−4; IL12B:rs6887695, U.S. PS, P = 5×10−5 and U.K. PSA, P = 1.3×10−3) and detected an independent association in the IL23R region with a SNP 4 kb upstream from IL12RB2 (P = 0.001). Novel associations replicated in the U.S. PS cohort included the region harboring lipoma HMGIC fusion partner (LHFP) and conserved oligomeric golgi complex component 6 (COG6) genes on chromosome 13q13 (combined P = 2×10−6 for rs7993214; OR = 0.71), the late cornified envelope gene cluster (LCE) from the Epidermal Differentiation Complex (PSORS4) (combined P = 6.2×10−5 for rs6701216; OR 1.45) and a region of LD at 15q21 (combined P = 2.9×10−5 for rs3803369; OR = 1.43). This region is of interest because it harbors ubiquitin-specific protease-8 whose processed pseudogene lies upstream from HLA-C. This region of 15q21 also harbors the gene for SPPL2A (signal peptide peptidase like 2a) which activates tumor necrosis factor alpha by cleavage, triggering the expression of IL12 in human dendritic cells. We also identified a novel PSA (and potentially PS) locus on chromosome 4q27. This region harbors the interleukin 2 (IL2) and interleukin 21 (IL21) genes and was recently shown to be associated with four autoimmune diseases (Celiac disease, Type 1 diabetes, Grave's disease and Rheumatoid Arthritis)

    High-Density SNP Screening of the Major Histocompatibility Complex in Systemic Lupus Erythematosus Demonstrates Strong Evidence for Independent Susceptibility Regions

    Get PDF
    A substantial genetic contribution to systemic lupus erythematosus (SLE) risk is conferred by major histocompatibility complex (MHC) gene(s) on chromosome 6p21. Previous studies in SLE have lacked statistical power and genetic resolution to fully define MHC influences. We characterized 1,610 Caucasian SLE cases and 1,470 parents for 1,974 MHC SNPs, the highly polymorphic HLA-DRB1 locus, and a panel of ancestry informative markers. Single-marker analyses revealed strong signals for SNPs within several MHC regions, as well as with HLA-DRB1 (global p = 9.99×10−16). The most strongly associated DRB1 alleles were: *0301 (odds ratio, OR = 2.21, p = 2.53×10−12), *1401 (OR = 0.50, p = 0.0002), and *1501 (OR = 1.39, p = 0.0032). The MHC region SNP demonstrating the strongest evidence of association with SLE was rs3117103, with OR = 2.44 and p = 2.80×10−13. Conditional haplotype and stepwise logistic regression analyses identified strong evidence for association between SLE and the extended class I, class I, class III, class II, and the extended class II MHC regions. Sequential removal of SLE–associated DRB1 haplotypes revealed independent effects due to variation within OR2H2 (extended class I, rs362521, p = 0.006), CREBL1 (class III, rs8283, p = 0.01), and DQB2 (class II, rs7769979, p = 0.003, and rs10947345, p = 0.0004). Further, conditional haplotype analyses demonstrated that variation within MICB (class I, rs3828903, p = 0.006) also contributes to SLE risk independent of HLA-DRB1*0301. Our results for the first time delineate with high resolution several MHC regions with independent contributions to SLE risk. We provide a list of candidate variants based on biologic and functional considerations that may be causally related to SLE risk and warrant further investigation

    A Large-Scale Rheumatoid Arthritis Genetic Study Identifies Association at Chromosome 9q33.2

    Get PDF
    Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease affecting both joints and extra-articular tissues. Although some genetic risk factors for RA are well-established, most notably HLA-DRB1 and PTPN22, these markers do not fully account for the observed heritability. To identify additional susceptibility loci, we carried out a multi-tiered, case-control association study, genotyping 25,966 putative functional SNPs in 475 white North American RA patients and 475 matched controls. Significant markers were genotyped in two additional, independent, white case-control sample sets (661 cases/1322 controls from North America and 596 cases/705 controls from The Netherlands) identifying a SNP, rs1953126, on chromosome 9q33.2 that was significantly associated with RA (ORcommon = 1.28, trend Pcomb = 1.45E-06). Through a comprehensive fine-scale-mapping SNP-selection procedure, 137 additional SNPs in a 668 kb region from MEGF9 to STOM on 9q33.2 were chosen for follow-up genotyping in a staged-approach. Significant single marker results (Pcomb<0.01) spanned a large 525 kb region from FBXW2 to GSN. However, a variety of analyses identified SNPs in a 70 kb region extending from the third intron of PHF19 across TRAF1 into the TRAF1-C5 intergenic region, but excluding the C5 coding region, as the most interesting (trend Pcomb: 1.45E-06 → 5.41E-09). The observed association patterns for these SNPs had heightened statistical significance and a higher degree of consistency across sample sets. In addition, the allele frequencies for these SNPs displayed reduced variability between control groups when compared to other SNPs. Lastly, in combination with the other two known genetic risk factors, HLA-DRB1 and PTPN22, the variants reported here generate more than a 45-fold RA-risk differential

    Using population admixture to help complete maps of the human genome

    Get PDF
    Tens of millions of base pairs of euchromatic human genome sequence, including many protein-coding genes, have no known location in the human genome. We describe an approach for localizing the human genome's missing pieces by utilizing the patterns of genome sequence variation created by population admixture. We mapped the locations of 70 scaffolds spanning four million base pairs of the human genome's unplaced euchromatic sequence, including more than a dozen protein-coding genes, and identified eight large novel inter-chromosomal segmental duplications. We find that most of these sequences are hidden in the genome's heterochromatin, particularly its pericentromeric regions. Many cryptic, pericentromeric genes are expressed in RNA and have been maintained intact for millions of years while their expression patterns diverged from those of paralogous genes elsewhere in the genome. We describe how knowledge of the locations of these sequences can inform disease association and genome biology studies

    A Genome-Wide Homozygosity Association Study Identifies Runs of Homozygosity Associated with Rheumatoid Arthritis in the Human Major Histocompatibility Complex

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disorder with a polygenic mode of inheritance. This study examined the hypothesis that runs of homozygosity (ROHs) play a recessive-acting role in the underlying RA genetic mechanism and identified RA-associated ROHs. Ours is the first genome-wide homozygosity association study for RA and characterized the ROH patterns associated with RA in the genomes of 2,000 RA patients and 3,000 normal controls of the Wellcome Trust Case Control Consortium. Genome scans consistently pinpointed two regions within the human major histocompatibility complex region containing RA-associated ROHs. The first region is from 32,451,664 bp to 32,846,093 bp (−log10(p)>22.6591). RA-susceptibility genes, such as HLA-DRB1, are contained in this region. The second region ranges from 32,933,485 bp to 33,585,118 bp (−log10(p)>8.3644) and contains other HLA-DPA1 and HLA-DPB1 genes. These two regions are physically close but are located in different blocks of linkage disequilibrium, and ∼40% of the RA patients' genomes carry these ROHs in the two regions. By analyzing homozygote intensities, an ROH that is anchored by the single nucleotide polymorphism rs2027852 and flanked by HLA-DRB6 and HLA-DRB1 was found associated with increased risk for RA. The presence of this risky ROH provides a 62% accuracy to predict RA disease status. An independent genomic dataset from 868 RA patients and 1,194 control subjects of the North American Rheumatoid Arthritis Consortium successfully validated the results obtained using the Wellcome Trust Case Control Consortium data. In conclusion, this genome-wide homozygosity association study provides an alternative to allelic association mapping for the identification of recessive variants responsible for RA. The identified RA-associated ROHs uncover recessive components and missing heritability associated with RA and other autoimmune diseases

    Genetic ancestry is associated with colorectal adenomas and adenocarcinomas in Latino populations

    Get PDF
    Colorectal cancer rates in Latin American countries are less than half of those observed in the United States. Latin Americans are the resultant of generations of an admixture of Native American, European, and African individuals. The potential role of genetic admixture in colorectal carcinogenesis has not been examined. We evaluate the association of genetic ancestry with colorectal neoplasms in 190 adenocarcinomas, 113 sporadic adenomas and 243 age- and sex-matched controls enrolled in a multicentric case–control study in Colombia. Individual ancestral genetic fractions were estimated using the STRUCTURE software, based on allele frequencies and assuming three distinct population origins. We used the Illumina Cancer Panel to genotype 1,421 sparse single-nucleotide polymorphisms (SNPs), and Northern and Western European ancestry, LWJ and Han Chinese in Beijing, China populations from the HapMap project as references. A total of 678 autosomal SNPs overlapped with the HapMap data set SNPs and were used for ancestry estimations. African mean ancestry fraction was higher in adenomas (0.13, 95% confidence interval (95% CI)=0.11–0.15) and cancer cases (0.14, 95% CI=0.12–0.16) compared with controls (0.11, 95% CI=0.10–0.12). Conditional logistic regression analysis, controlling for known risk factors, showed a positive association of African ancestry per 10% increase with both colorectal adenoma (odds ratio (OR)=1.12, 95% CI=0.97–1.30) and adenocarcinoma (OR=1.19, 95% CI=1.05–1.35). In conclusion, increased African ancestry (or variants linked to it) contributes to the increased susceptibility of colorectal cancer in admixed Latin American population

    CTRP6 is an endogenous complement regulator that can effectively treat induced arthritis

    Get PDF
    The complement system is important for the host defence against infection as well as for the development of inflammatory diseases. Here we show that C1q/TNF-related protein 6 (CTRP6; gene symbol C1qtnf6) expression is elevated in mouse rheumatoid arthritis (RA) models. C1qtnf6 -/- mice are highly susceptible to induced arthritis due to enhanced complement activation, whereas C1qtnf6-transgenic mice are refractory. The Arthus reaction and the development of experimental autoimmune encephalomyelitis are also enhanced in C1qtnf6 -/- mice and C1qtnf6 -/- embryos are semi-lethal. We find that CTRP6 specifically suppresses the alternative pathway of the complement system by competing with factor B for C3(H 2 O) binding. Furthermore, treatment of arthritis-induced mice with intra-articular injection of recombinant human CTRP6 cures the arthritis. CTRP6 is expressed in human synoviocytes, and CTRP6 levels are increased in RA patients. These results indicate that CTRP6 is an endogenous complement regulator and could be used for the treatment of complement-mediated diseases
    corecore