42 research outputs found
Neurogenesis Drives Stimulus Decorrelation in a Model of the Olfactory Bulb
The reshaping and decorrelation of similar activity patterns by neuronal
networks can enhance their discriminability, storage, and retrieval. How can
such networks learn to decorrelate new complex patterns, as they arise in the
olfactory system? Using a computational network model for the dominant neural
populations of the olfactory bulb we show that fundamental aspects of the adult
neurogenesis observed in the olfactory bulb -- the persistent addition of new
inhibitory granule cells to the network, their activity-dependent survival, and
the reciprocal character of their synapses with the principal mitral cells --
are sufficient to restructure the network and to alter its encoding of odor
stimuli adaptively so as to reduce the correlations between the bulbar
representations of similar stimuli. The decorrelation is quite robust with
respect to various types of perturbations of the reciprocity. The model
parsimoniously captures the experimentally observed role of neurogenesis in
perceptual learning and the enhanced response of young granule cells to novel
stimuli. Moreover, it makes specific predictions for the type of odor
enrichment that should be effective in enhancing the ability of animals to
discriminate similar odor mixtures
Pαx6 Expression in Postmitotic Neurons Mediates the Growth of Axons in Response to SFRP1
During development, the mechanisms that specify neuronal subclasses are coupled to those that determine their axonal response to guidance cues. Pax6 is a homedomain transcription factor required for the specification of a variety of neural precursors. After cell cycle exit, Pax6 expression is often shut down in the precursor progeny and most postmitotic neurons no longer express detectable levels of the protein. There are however exceptions and high Pax6 protein levels are found, for example, in postmitotic retinal ganglion cells (RGCs), dopaminergic neurons of the olfactory bulb and the limbic system in the telencephalon. The function of Pax6 in these differentiating neurons remains mostly elusive. Here, we demonstrate that Pax6 mediates the response of growing axons to SFRP1, a secreted molecule expressed in several Pax6-positive forebrain territories. Forced expression of Pax6 in cultured postmitotic cortical neurons, which do not normally express Pax6, was sufficient to increment axonal length. Growth was blocked by the addition of anti-SFRP1 antibodies, whereas exogenously added SFRP1 increased axonal growth of Pax6-transfected neurons but not that of control or untransfected cortical neurons. In the reverse scenario, shRNA-mediated knock-down of Pax6 in mouse retinal explants specifically abolished RGCs axonal growth induced by SFRP1, but had no effect on RGCs differentiation and it did not modify the effect of Shh or Netrin on axon growth. Taken together these results demonstrate that expression of Pax6 is necessary and sufficient to render postmitotic neurons competent to respond to SFRP1. These results reveal a novel and unexpected function of Pax6 in postmitotic neurons and situate Pax6 and SFRP1 as pair regulators of axonal connectivity
Physiological and biochemical parameters: new tools to screen barley root exudates allelopathic potential (*Hordeum vulgare* L. subsp. *vulgare*
peer reviewedMorphological markers/traits are often used in the detection of allelopathic stress, but optical signals including chlorophyll a fluorescence emission could be useful in developing new screening techniques. In this context, the allelopathic effect of barley (Hordeum vulgare subsp. vulgare) root exudates (three modern varieties and three landraces) were assessed on the morphological (root and shoot length, biomass accumulation), physiological (Fv/Fm and F0), and biochemical (chlorophyll and protein contents) variables of great brome (Bromus diandrus Roth., syn. Bromus rigidus Roth. subsp. gussonii Parl.). All the measured traits were affected when great brome was grown in a soil substrate in which barley plants had previously developed for 30 days before being removed. The response of receiver plants was affected by treatment with activated
charcoal, dependent on barley genotype and on the nature of the growing substrate. The inhibitory effect was lower with the addition of the activated charcoal suggesting the release of putative allelochemicals from barley roots into the soil. The barley landraces were more toxic than modern varieties and their effect was more pronounced in sandy substrate than in silty
clay sand substrate. In our investigation, the chlorophyll content and Fv/Fm were the most correlated variables with barley allelopathic potential. These two parameters might be considered as effective tools to quantify susceptibility to allelochemical inhibitors in higher plants