117 research outputs found

    Efficacy of a multifaceted podiatry intervention to improve balance and prevent falls in older people: study protocol for a randomised trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Falls in older people are a major public health problem, with at least one in three people aged over 65 years falling each year. There is increasing evidence that foot problems and inappropriate footwear increase the risk of falls, however no studies have been undertaken to determine whether modifying these risk factors decreases the risk of falling. This article describes the design of a randomised trial to evaluate the efficacy of a multifaceted podiatry intervention to reduce foot pain, improve balance, and reduce falls in older people.</p> <p>Methods</p> <p>Three hundred community-dwelling men and women aged 65 years and over with current foot pain and an increased risk of falling will be randomly allocated to a control or intervention group. The "usual cae" control group will receive routine podiatry (i.e. nail care and callus debridement). The intervention group will receive usual care plus a multifaceted podiatry intervention consisting of: (i) prefabricated insoles customised to accommodate plantar lesions; (ii) footwear advice and assistance with the purchase of new footwear if current footwear is inappropriate; (iii) a home-based exercise program to strengthen foot and ankle muscles; and (iv) a falls prevention education booklet. Primary outcome measures will be the number of fallers, number of multiple fallers and the falls rate recorded by a falls diary over a 12 month period. Secondary outcome measures assessed six months after baseline will include the Medical Outcomes Study Short Form 12 (SF-12), the Manchester Foot Pain and Disability Index, the Falls Efficacy Scale International, and a series of balance and functional tests. Data will be analysed using the intention to treat principle.</p> <p>Discussion</p> <p>This study is the first randomised trial to evaluate the efficacy of podiatry in improving balance and preventing falls. The trial has been pragmatically designed to ensure that the findings can be generalised to clinical practice. If found to be effective, the multifaceted podiatry intervention will be a unique addition to common falls prevention strategies already in use.</p> <p>Trial registration</p> <p>Australian New Zealand Clinical Trials Registry: ACTRN12608000065392</p

    Embracing additive manufacture: implications for foot and ankle orthosis design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The design of foot and ankle orthoses is currently limited by the methods used to fabricate the devices, particularly in terms of geometric freedom and potential to include innovative new features. Additive manufacturing (AM) technologies, where objects are constructed via a series of sub-millimetre layers of a substrate material, may present the opportunity to overcome these limitations and allow novel devices to be produced that are highly personalised for the individual, both in terms of fit and functionality.</p> <p>Two novel devices, a foot orthosis (FO) designed to include adjustable elements to relieve pressure at the metatarsal heads, and an ankle foot orthosis (AFO) designed to have adjustable stiffness levels in the sagittal plane, were developed and fabricated using AM. The devices were then tested on a healthy participant to determine if the intended biomechanical modes of action were achieved.</p> <p>Results</p> <p>The adjustable, pressure relieving FO was found to be able to significantly reduce pressure under the targeted metatarsal heads. The AFO was shown to have distinct effects on ankle kinematics which could be varied by adjusting the stiffness level of the device.</p> <p>Conclusions</p> <p>The results presented here demonstrate the potential design freedom made available by AM, and suggest that it may allow novel personalised orthotic devices to be produced which are beyond the current state of the art.</p

    Footing the bill: the introduction of Medicare Benefits Schedule rebates for podiatry services in Australia

    Get PDF
    The introduction of Medicare Benefits Schedule items for allied health professionals in 2004 was a pivotal event in the public funding of non-medical primary care services. This commentary seeks to provide supplementary discussion of the article by Menz (Utilisation of podiatry services in Australia under the Medicare Enhanced Primary Care program, 2004-2008 Journal of Foot and Ankle Research 2009, 2:30), by placing these findings within the context of the podiatry profession, clinical decision making and the broader health workforce and government policy

    Canopy fruit location can affect olive oil quality in Arbequina hedgerow orchards

    Get PDF
    The effect of location of fruit in canopies of hedgerow olive trees (Olea europaea L., cv. ‘Arbequina’) on quality of virgin oil was tested by analyzing oils extracted from different height layers and faces of 9 olive hedgerows (6 North-South oriented and 3 East-West). Although sensory attributes were not different other oil quality parameters may be significantly modified by fruit position. In some hedgerows, oils extracted from fruits harvested from higher layers exhibited significantly higher stability against oxidation, along with higher palmitic acid, linoleic acid and phenol contents, but lower oleic acid content. Oils extracted from fruits harvested from East and North facing hedgerows oriented North-South and East-West, respectively, exhibited higher oleic contents and lower saturated and polyunsaturated fatty acid contents. The mean phenol content of oils extracted from fruits from a North-South oriented hedgerow was significantly greater from one of the East-West oriented hedgerows. These findings may be relevant for the design of future olive hedgerows destined for olive oil production

    Evaluation of the measurement properties of the Manchester foot pain and disability index

    Get PDF
    BACKGROUND: The Manchester Foot Pain and Disability Index (MFPDI, 19 items) was developed to measure functional limitations, pain and appearance for patients with foot pain and is frequently used in both observational studies and randomised controlled trials. A Dutch version of the MFPDI was developed. The aims of this study were to evaluate all the measurement properties for the Dutch version of the MFPDI and to evaluate comparability to the original version. METHOD: The MFPDI was translated into Dutch using a forward/backward translation process. The dimensionality was evaluated using exploratory and confirmatory factor analysis. Measurement properties were evaluated per subscale according to the COSMIN taxonomy consisting of: reliability (internal consistency, test-retest reliability and measurement error), validity (structural validity, content validity and cross-cultural validity comparing the Dutch version to the English version) responsiveness and interpretation. RESULTS: The questionnaire consists of three scales, measuring foot function, foot pain and perception. The reliability of the foot function scale is acceptable (Cronbach’s α > 0.7, ICC = 0.7, SEM = 2.2 on 0-18 scale). The construct validity of the function and pain scale was confirmed and only the pain scale contains one item with differential item functioning (DIF). The responsiveness of the function and pain scale is moderate when compared to anchor questions. CONCLUSION: Results using the Dutch MFPDI version can be compared to results using the original version. The foot function sub-scale (items 1-9) is a reliable and valid sub-scale. This study indicates that the use of the MFPDI as a longitudinal instrument might be problematic for measuring change in musculoskeletal foot pain due to moderate responsiveness

    Are clinical measures of foot posture and mobility associated with foot kinematics when walking?

    Get PDF
    Background: There is uncertainty as to which foot posture measures are the most valid in terms of predicting kinematics of the foot. The aim of this study was to investigate the associations of clinical measures of static foot posture and mobility with foot kinematics during barefoot walking. Method: Foot posture and mobility were measured in 97 healthy adults (46 males, 51 females; mean age 24.4 ± 6.2 years). Foot posture was assessed using the 6-item Foot Posture Index (FPI), Arch Index (AI), Normalised Navicular Height (NNHt) and Normalised Dorsal Arch Height (DAH). Foot mobility was evaluated using the Foot Mobility Magnitude (FMM) measure. Following this, a five-segment foot model was used to measure tri-planar motion of the rearfoot, midfoot, medial forefoot, lateral forefoot and hallux. Peak and range of motion variables during load acceptance and midstance/propulsion phases of gait were extracted for all relative segment to segment motion calculations. Hierarchical regression analyses were conducted, adjusting for potential confounding variables. Results: The degree of variance in peak and range of motion kinematic variables that was independently explained by foot posture measures was as follows: FPI 5 to 22 %, NNHt 6 to 20 %, AI 7 to 13 %, DAH 6 to 8 %, and FMM 8 %. The FPI was retained as a significant predictor across the most number of kinematic variables. However, the amount of variance explained by the FPI for individual kinematic variables did not exceed other measures. Overall, static foot posture measures were more strongly associated with kinematic variables than foot mobility measures and explained more variation in peak variables compared to range of motion variables. Conclusions: Foot posture measures can explain only a small amount of variation in foot kinematics. Static foot posture measures, and in particular the FPI, were more strongly associated with foot kinematics compared with foot mobility measures. These findings suggest that foot kinematics cannot be accurately inferred from clinical observations of foot posture alone

    A geometric analysis of hallux valgus: correlation with clinical assessment of severity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Application of plane geometry to the study of bunion deformity may represent an interesting and novel approach in the research field of hallux valgus. For the purpose of contributing to development of a different perspective in the assessment of hallux valgus, this study was conducted with three objectives: a) to determine the position on the intersection point of the perpendicular bisectors of the longitudinal axes of the first metatarsal and proximal phalanx (IP), b) to correlate the location of this point with hallux valgus deformity according to angular measurements and according to visual assessment of the severity carried out by three independent observers, and c) to assess whether this IP correlated with the radius of the first metatarsophalangeal arc circumference.</p> <p>Methods</p> <p>Measurements evaluated were intermetatarsal angle (IMA), hallux valgus angle (HVA), and proximal phalangeal articular angle (PPAA). The Autocad<sup>® </sup>program computed the location of the IP inside or outside of the foot. Three independent observers rated the severity of hallux valgus in photographs using a 100-mm visual analogue scale (VAS).</p> <p>Results</p> <p>Measurements of all angles except PPAA showed significantly lower values when the IP was located out of the foot more distantly and vice versa, significantly higher values for severe deformities in which the IP was found inside the foot (<it>p </it>< 0.001). The IP correlated significantly with VAS scores and with the length of the radius of the circle that included the first metatarsophalangeal arc circumference (<it>p </it>< 0.001)</p> <p>Conclusion</p> <p>The IP is a useful indicator of hallux valgus deformity because correlated significantly with IMA and HVA measurements, VAS scores obtained by visual inspection of the degree of deformity, and location of the center of the first metatarsophalangeal arc circumference.</p
    • …
    corecore