37 research outputs found

    Early B-cell Factor gene association with multiple sclerosis in the Spanish population

    Get PDF
    BACKGROUND: The etiology of multiple sclerosis (MS) is at present not fully elucidated, although it is considered to result from the interaction of environmental and genetic susceptibility factors. In this work we aimed at testing the Early B-cell Factor (EBF1) gene as a functional and positional candidate risk factor for this neurological disease. Axonal damage is a hallmark for multiple sclerosis clinical disability and EBF plays an evolutionarily conserved role in the expression of proteins essential for axonal pathfinding. Failure of B-cell differentiation was found in EBF-deficient mice and involvement of B-lymphocytes in MS has been suggested from their presence in cerebrospinal fluid and lesions of patients. METHODS: The role of the EBF1 gene in multiple sclerosis susceptibility was analyzed by performing a case-control study with 356 multiple sclerosis patients and 540 ethnically matched controls comparing the EBF1 polymorphism rs1368297 and the microsatellite D5S2038. RESULTS: Significant association of an EBF1-intronic polymorphism (rs1368297, A vs. T: p = 0.02; OR = 1.26 and AA vs. [TA+TT]: p = 0.02; OR = 1.39) was discovered. This association was even stronger after stratification for the well-established risk factor of multiple sclerosis in the Major Histocompatibility Complex, DRB1*1501 (AA vs. [TA+TT]: p = 0.005; OR = 1.78). A trend for association in the case-control study of another EBF1 marker, the allele 5 of the very informative microsatellite D5S2038, was corroborated by Transmission Disequilibrium Test of 53 trios (p = 0.03). CONCLUSION: Our data support EBF1 gene association with MS pathogenesis in the Spanish white population. Two genetic markers within the EBF1 gene have been found associated with this neurological disease, indicative either of their causative role or that of some other polymorphism in linkage disequilibrium with them

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    CHANGE IN VOLUME AND MORPHOLOGY IN CULTURES OF OLEISPIRA ANTARCTICA AS A FUNCTION OF TEMPERATURE AND SUBSTRATES USED

    No full text
    Bacterial population under nutritional and physic stress react in order to adequate cell metabolism and physiology to stressful conditions. One of the most frequently observed behaviours in the stress-starvation response of gram-negative bacteria is the size reduction and cell morphology conversion from rod to resistant shape-form. In such framework, we report here on morphology (cell volume and cell shape) variations in psychrophilic strain Oleispira antarctica RB 8T under different growth temperature and different hydrocarbons mixtures sources. Six different hydrocarbons mixtures (car commercial diesel, commercial crude oil engine; 2 different bilge waters, military jet fuel and crude oil) were used as single carbon source and two different cultivation temperatures (4\ub0 and 15\ub0C) were tested for 22 days. During incubation period, sub-aliquots of each bacterial culture were processed to estimate total bacterial abundance (DAPI count), variation of cell volume and morphological diversity (determination from digital photomicrographs using an image analysis program). Total bacterial abundance by DAPI staining showed an increase at both temperatures and in almost all substrates used in the first 18 days of experiment; after, values of bacterial abundance by DAPI counts showed a decrement of almost all cultures at both incubation temperatures. Overall, the mean cell volume decreased with increasing of temperature. Three morphological types of bacteria were identified: spiral bacteria (spirillae and curved rods), cocci and rods. The morphological analysis revealed that the spiral bacteria forms changed significantly in coccoid and rods shapes, in relation with the added substrates, except for the bilge waters, where spiral bacteria were mostly the dominant shape. The study of morphological and physiological variation of hydrocarbonoclastic bacteria is a fundamental topic for the study of their potential use in the mitigation of oil spills phenomenon in cold environment

    Biological Functions of Iduronic Acid in Chondroitin/Dermatan Sulfate.

    Get PDF
    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides, as it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties such as migration, proliferation, differentiation, angiogenesis and regulation of cytokine/growth factor activities. During pathological conditions such as wound healing, inflammation and cancer iduronic acid has diverse regulatory functions. Iduronic acid is formed by the two epimerases DS-epimerase 1 and DS-epimerase 2 which have different tissue distribution and properties. The role of IdoA in chondroitin/dermatan sulfate is underlined by the vast changes of connective tissue features in patients with a new type of Ehler-Danlos syndrome, adducted thumb-clubfoot syndrome. Future direction of research is to understand the roles of the two epimerases and their interplay with sulfotransferases involved in CS/DS biosynthesis. Further, a better definition of chondroitin/dermatan sulfate functions using different knock-out models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation and the role of iduronic acid in health and disease. © 2013 The Authors Journal compilation © 2013 FEBS
    corecore