40 research outputs found
Early B-cell Factor gene association with multiple sclerosis in the Spanish population
BACKGROUND: The etiology of multiple sclerosis (MS) is at present not fully elucidated, although it is considered to result from the interaction of environmental and genetic susceptibility factors. In this work we aimed at testing the Early B-cell Factor (EBF1) gene as a functional and positional candidate risk factor for this neurological disease. Axonal damage is a hallmark for multiple sclerosis clinical disability and EBF plays an evolutionarily conserved role in the expression of proteins essential for axonal pathfinding. Failure of B-cell differentiation was found in EBF-deficient mice and involvement of B-lymphocytes in MS has been suggested from their presence in cerebrospinal fluid and lesions of patients. METHODS: The role of the EBF1 gene in multiple sclerosis susceptibility was analyzed by performing a case-control study with 356 multiple sclerosis patients and 540 ethnically matched controls comparing the EBF1 polymorphism rs1368297 and the microsatellite D5S2038. RESULTS: Significant association of an EBF1-intronic polymorphism (rs1368297, A vs. T: p = 0.02; OR = 1.26 and AA vs. [TA+TT]: p = 0.02; OR = 1.39) was discovered. This association was even stronger after stratification for the well-established risk factor of multiple sclerosis in the Major Histocompatibility Complex, DRB1*1501 (AA vs. [TA+TT]: p = 0.005; OR = 1.78). A trend for association in the case-control study of another EBF1 marker, the allele 5 of the very informative microsatellite D5S2038, was corroborated by Transmission Disequilibrium Test of 53 trios (p = 0.03). CONCLUSION: Our data support EBF1 gene association with MS pathogenesis in the Spanish white population. Two genetic markers within the EBF1 gene have been found associated with this neurological disease, indicative either of their causative role or that of some other polymorphism in linkage disequilibrium with them
Translocated LPS Might Cause Endotoxin Tolerance in Circulating Monocytes of Cystic Fibrosis Patients
Cystic Fibrosis (CF) is an inherited pleiotropic disease that results from abnormalities in the gene codes of a chloride channel. The lungs of CF patients are chronically infected by several pathogens but bacteraemia have rarely been reported in this pathology. Besides that, circulating monocytes in CF patients exhibit a patent Endotoxin Tolerance (ET) state since they show a significant reduction of the inflammatory response to bacterial stimulus. Despite a previous description of this phenomenon, the direct cause of ET in CF patients remains unknown. In this study we have researched the possible role of microbial/endotoxin translocation from a localized infection to the bloodstream as a potential cause of ET induction in CF patients. Plasma analysis of fourteen CF patients revealed high levels of LPS compared to healthy volunteers and patients who suffer from Chronic Obstructive Pulmonary Disease. Experiments in vitro showed that endotoxin concentrations found in plasma of CF patients were enough to induce an ET phenotype in monocytes from healthy controls. In agreement with clinical data, we failed to detect bacterial DNA in CF plasma. Our results suggest that soluble endotoxin present in bloodstream of CF patients causes endotoxin tolerance in their circulating monocytes