13,529 research outputs found
Morphometry of Glenoid Cavity
Objectives: Knowledge of the shape and dimensions of the glenoid are important in the design and fitting of glenoid components for total shoulder arthroplasty. An understanding of variations in normal anatomy of the glenoid is essential while evaluating pathological conditions like osseous Bankart lesions and osteochondral defects. Methods: This study was done on 202 dry, unpaired adult human scapulae of unknown sex belonging to the south Indian population. Three glenoid diameters were measured, the superior-inferior diameter, anterior-posterior diameter of the lower half and the anterior-posterior diameter of the upper half of the glenoid. Based on a notch present on the anterior glenoid rim, variations in the shape of the glenoid cavity were classified as inverted comma shaped, pear shaped and oval. Results: The average superior-inferior diameter on right and the left sides were 33.67±2.82mm and 33.92±2.87mm respectively. The average anterior-posterior diameter of the lower half of the right glenoid was 23.35±2.04mm and that of the left was 23.02±2.30mm. The mean diameter of the upper half of the right glenoid was 16.27±2.01mm and that of the left was 15.77±1.96mm. Conclusion: The dimensions of the glenoid observed in the present study were lesser than those recorded in the studies done on other populations. This fact may be taken into consideration while designing glenoid prostheses for the south Indian population. The current study recorded a higher percentage of glenoid cavities having the glenoid notch as compared to earlier studies. While evaluating defects/lesions of the glenoid, this fact could be useful
Effect of a single Dialysis session on plasma Lp(a) levels in patients on Maintenance haemodialysis
Background: 
Cardiovascular disease (CVD) is a major cause of mortality in End stage renal disease (ESRD) patients on Maintenance haemodialysis (MHD). Lp (a), is a specialized form of glycoprotein-LDL-cholesterol complex and is an independent risk factor for myocardial infarction. The risk is related to its atherogenic and thrombogenic properties. The present study was taken up to evaluate changes in Lp(a) and Lipid profile in patients undergoing hemodialysis session. 

Methodology: 
Twenty seven patients with end stage renal disease who were on maintenance hemodialysis were included. Plasma samples were collected hourly during a dialysis session with polysulfone membrane using bicarbonate dialysate. Plasma cholesterol, triglycerides, and Lp(a) were estimated on Beckmann CX9 Fully Automated Analyzer using commercial kits. Statistical analysis was performed using SPSS for windows version 11.5.

Results: 
Results of analysis of variance for repeated measures after correction for hemoconcentration where necessary revealed a decrease in Lp(a) (p=0.022) and triglycerides (p=0.001) levels and no change in cholesterol (p=0.48) levels.

Conclusion: 
Maintenance dialysis program is known to produce Dyslipidemia. Study of Lp(a) in dialysis patients is important as this is an independent risk marker. However there are very few reports on changes in Lp(a) due to the dialysis session. Our findings will be discussed in comparison with other reports.

Probing ultrafast carrier dynamics and nonlinear absorption and refraction in core-shell silicon nanowires
We investigate the relaxation dynamics of photogenerated carriers in silicon
nanowires consisting of a crystalline core and a surrounding amorphous shell,
using femtosecond time-resolved differential reflectivity and transmission
spectroscopy at photon energies of 3.15 eV and 1.57 eV. The complex behavior of
the differential transmission and reflectivity transients is the mixed
contributions from the crystalline core and the amorphous silicon on the
nanowire surface and the substrate where competing effects of state filling and
photoinduced absorption govern the carrier dynamics. Faster relaxation rates
are observed on increasing the photo-generated carrier density. Independent
experimental results on crystalline silicon-on-sapphire help us in separating
the contributions from the carrier dynamics in crystalline core and the
amorphous regions in the nanowire samples. Further, single beam z-scan
nonlinear transmission experiments at 1.57 eV in both open and close aperture
configurations yield two-photon absorption coefficient \ (~3 cm/GW) and
nonlinear refraction coefficient \ (-2.5x10^-4 cm2/GW).Comment: 6 pages, 6 figure
A novel targeted/untargeted GC-Orbitrap metabolomics methodology applied to Candida albicans and Staphylococcus aureus biofilms
Introduction:
Combined infections from Candida albicans and Staphylococcus aureus are a leading cause of death in the developed world. Evidence suggests that Candida enhances the virulence of Staphylococcus—hyphae penetrate through tissue barriers, while S. aureus tightly associates with the hyphae to obtain entry to the host organism. Indeed, in a biofilm state, C. albicans enhances the antimicrobial resistance characteristics of S. aureus. The association of these microorganisms is also associated with significantly increased morbidity and mortality. Due to this tight association we hypothesised that metabolic effects were also in evidence.
Objectives:
To explore the interaction, we used a novel GC-Orbitrap-based mass spectrometer, the Q Exactive GC, which combines the high peak capacity and chromatographic resolution of gas chromatography with the sub-ppm mass accuracy of an Orbitrap system. This allows the capability to leverage the widely available electron ionisation libraries for untargeted applications, along with expanding accurate mass libraries and targeted matches based around authentic standards.
Methods:
Optimised C. albicans and S. aureus mono- and co-cultured biofilms were analysed using the new instrument in addition to the fresh and spent bacterial growth media.
Results:
The targeted analysis experiment was based around 36 sugars and sugar phosphates, 22 amino acids and five organic acids. Untargeted analysis resulted in the detection of 465 features from fresh and spent medium and 405 from biofilm samples. Three significantly changing compounds that matched to high scoring library fragment patterns were chosen for validation.
Conclusion:
Evaluation of the results demonstrates that the Q Exactive GC is suitable for metabolomics analysis using a targeted/untargeted methodology. Many of the results were as expected: e.g. rapid consumption of glucose and fructose from the medium regardless of the cell type. Modulation of sugar-phosphate levels also suggest that the pentose phosphate pathway could be enhanced in the cells from co-cultured biofilms. Untargeted metabolomics results suggested significant production of cell-wall biosynthesis components and the consumption of non-proteinaceous amino-acids
Nanofiber fabrication in a temperature and humidity controlled environment for improved fibre consistency
To fabricate nanofibers with reproducible characteristics, an important demand for many applications, the effect of controlled atmospheric conditions on resulting electrospun cellulose acetate (CA) nanofibers was evaluated for temperature ranging 17.5 - 35°C and relative humidity ranging 20% - 70%. With the potential application of nanofibers in many industries, especially membrane and filter fabrication, their reproducible production must be established to ensure commercially viability.
Cellulose acetate (CA) solution (0.2 g/ml) in a solvent mixture of acetone/DMF/ethanol (2:2:1) was electrospun into nonwoven fibre mesh with the fibre diameter ranging from 150nm to 1µm.
The resulting nanofibers were observed and analyzed by scanning electron microscopy (SEM), showing a correlation of reducing average fibre diameter with increasing atmospheric temperature. A less pronounced correlation was seen with changes in relative humidity regarding fibre diameter, though it was shown that increased humidity reduced the effect of fibre beading yielding a more consistent, and therefore better quality of fibre fabrication.
Differential scanning calorimetry (DSC) studies observed lower melt enthalpies for finer CA nanofibers in the first heating cycle confirming the results gained from SEM analysis. From the conditions that were explored in this study the temperature and humidity that gave the most suitable fibre mats for a membrane purpose were 25.0°C and 50%RH due to the highest level of fibre diameter uniformity, the lowest level of beading while maintaining a low fibre diameter for increased surface area and increased pore size homogeneity. This study has highlighted the requirement to control the atmospheric conditions during the electrospinning process in order to fabricate reproducible fibre mats
An Efficient Local Search for Partial Latin Square Extension Problem
A partial Latin square (PLS) is a partial assignment of n symbols to an nxn
grid such that, in each row and in each column, each symbol appears at most
once. The partial Latin square extension problem is an NP-hard problem that
asks for a largest extension of a given PLS. In this paper we propose an
efficient local search for this problem. We focus on the local search such that
the neighborhood is defined by (p,q)-swap, i.e., removing exactly p symbols and
then assigning symbols to at most q empty cells. For p in {1,2,3}, our
neighborhood search algorithm finds an improved solution or concludes that no
such solution exists in O(n^{p+1}) time. We also propose a novel swap
operation, Trellis-swap, which is a generalization of (1,q)-swap and
(2,q)-swap. Our Trellis-neighborhood search algorithm takes O(n^{3.5}) time to
do the same thing. Using these neighborhood search algorithms, we design a
prototype iterated local search algorithm and show its effectiveness in
comparison with state-of-the-art optimization solvers such as IBM ILOG CPLEX
and LocalSolver.Comment: 17 pages, 2 figure
A two-year participatory intervention project with owners to reduce lameness and limb abnormalities in working horses in Jaipur, India
Participatory methods are increasingly used in international human development, but scientific evaluation of their efficacy versus a control group is rare. Working horses support families in impoverished communities. Lameness and limb abnormalities are highly prevalent in these animals and a cause for welfare concern. We aimed to stimulate and evaluate improvements in lameness and limb abnormalities in horses whose owners took part in a 2-year participatory intervention project to reduce lameness (PI) versus a control group (C) in Jaipur, India.In total, 439 owners of 862 horses participated in the study. PI group owners from 21 communities were encouraged to meet regularly to discuss management and work practices influencing lameness and poor welfare and to track their own progress in improving these. Lameness examinations (41 parameters) were conducted at the start of the study (Baseline), and after 1 year and 2 years. Results were compared with control horses from a further 21 communities outside the intervention. Of the 149 horses assessed on all three occasions, PI horses showed significantly (P<0.05) greater improvement than C horses in 20 parameters, most notably overall lameness score, measures of sole pain and range of movement on limb flexion. Control horses showed slight but significantly greater improvements in four parameters, including frog quality in fore and hindlimbs.This participatory intervention succeeded in improving lameness and some limb abnormalities in working horses, by encouraging changes in management and work practices which were feasible within owners’ socioeconomic and environmental constraints. Demonstration of the potentially sustainable improvements achieved here should encourage further development of participatory intervention approaches to benefit humans and animals in other contexts
Evolution of Th2 responses : Characterization of IL-4/13 in sea bass (Dicentrarchus labrax L.) and studies of expression and biological activity
Acknowledgements This research was funded by the European Commission under the 7th Framework Programme for Research and Technological Development (FP7) of the European Union (Grant Agreement 311993 TARGETFISH). T.W. received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (grant reference number HR09011) and contributing institutions.Peer reviewedPublisher PD
Bio-nanotechnology application in wastewater treatment
The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed
Complexity without chaos: Plasticity within random recurrent networks generates robust timing and motor control
It is widely accepted that the complex dynamics characteristic of recurrent
neural circuits contributes in a fundamental manner to brain function. Progress
has been slow in understanding and exploiting the computational power of
recurrent dynamics for two main reasons: nonlinear recurrent networks often
exhibit chaotic behavior and most known learning rules do not work in robust
fashion in recurrent networks. Here we address both these problems by
demonstrating how random recurrent networks (RRN) that initially exhibit
chaotic dynamics can be tuned through a supervised learning rule to generate
locally stable neural patterns of activity that are both complex and robust to
noise. The outcome is a novel neural network regime that exhibits both
transiently stable and chaotic trajectories. We further show that the recurrent
learning rule dramatically increases the ability of RRNs to generate complex
spatiotemporal motor patterns, and accounts for recent experimental data
showing a decrease in neural variability in response to stimulus onset
- …
