29 research outputs found

    I–II Loop Structural Determinants in the Gating and Surface Expression of Low Voltage-Activated Calcium Channels

    Get PDF
    The intracellular loops that interlink the four transmembrane domains of Ca2+- and Na+-channels (Cav, Nav) have critical roles in numerous forms of channel regulation. In particular, the intracellular loop that joins repeats I and II (I–II loop) in high voltage-activated (HVA) Ca2+ channels possesses the binding site for Cavβ subunits and plays significant roles in channel function, including trafficking the α1 subunits of HVA channels to the plasma membrane and channel gating. Although there is considerable divergence in the primary sequence of the I–II loop of Cav1/Cav2 HVA channels and Cav3 LVA/T-type channels, evidence for a regulatory role of the I–II loop in T-channel function has recently emerged for Cav3.2 channels. In order to provide a comprehensive view of the role this intracellular region may play in the gating and surface expression in Cav3 channels, we have performed a structure-function analysis of the I–II loop in Cav3.1 and Cav3.3 channels using selective deletion mutants. Here we show the first 60 amino acids of the loop (post IS6) are involved in Cav3.1 and Cav3.3 channel gating and kinetics, which establishes a conserved property of this locus for all Cav3 channels. In contrast to findings in Cav3.2, deletion of the central region of the I–II loop in Cav3.1 and Cav3.3 yielded a modest increase (+30%) and a reduction (−30%) in current density and surface expression, respectively. These experiments enrich our understanding of the structural determinants involved in Cav3 function by highlighting the unique role played by the intracellular I–II loop in Cav3.2 channel trafficking, and illustrating the prominent role of the gating brake in setting the slow and distinctive slow activation kinetics of Cav3.3

    Narrative Exposure Therapy as a treatment for child war survivors with posttraumatic stress disorder: Two case reports and a pilot study in an African refugee settlement

    Get PDF
    BACKGROUND: Little data exists on the effectiveness of psychological interventions for children with posttraumatic stress disorder (PTSD) that has resulted from exposure to war or conflict-related violence, especially in non-industrialized countries. We created and evaluated the efficacy of KIDNET, a child-friendly version of Narrative Exposure Therapy (NET), as a short-term treatment for children. METHODS: Six Somali children suffering from PTSD aged 12–17 years resident in a refugee settlement in Uganda were treated with four to six individual sessions of KIDNET by expert clinicians. Symptoms of PTSD and depression were assessed pre-treatment, post-treatment and at nine months follow-up using the CIDI Sections K and E. RESULTS: Important symptom reduction was evident immediately after treatment and treatment outcomes were sustained at the 9-month follow-up. All patients completed therapy, reported functioning gains and could be helped to reconstruct their traumatic experiences into a narrative with the use of illustrative material. CONCLUSIONS: NET may be safe and effective to treat children with war related PTSD in the setting of refugee settlements in developing countries

    Gastrodin Inhibits Allodynia and Hyperalgesia in Painful Diabetic Neuropathy Rats by Decreasing Excitability of Nociceptive Primary Sensory Neurons

    Get PDF
    Painful diabetic neuropathy (PDN) is a common complication of diabetes mellitus and adversely affects the patients’ quality of life. Evidence has accumulated that PDN is associated with hyperexcitability of peripheral nociceptive primary sensory neurons. However, the precise cellular mechanism underlying PDN remains elusive. This may result in the lacking of effective therapies for the treatment of PDN. The phenolic glucoside, gastrodin, which is a main constituent of the Chinese herbal medicine Gastrodia elata Blume, has been widely used as an anticonvulsant, sedative, and analgesic since ancient times. However, the cellular mechanisms underlying its analgesic actions are not well understood. By utilizing a combination of behavioral surveys and electrophysiological recordings, the present study investigated the role of gastrodin in an experimental rat model of STZ-induced PDN and to further explore the underlying cellular mechanisms. Intraperitoneal administration of gastrodin effectively attenuated both the mechanical allodynia and thermal hyperalgesia induced by STZ injection. Whole-cell patch clamp recordings were obtained from nociceptive, capsaicin-sensitive small diameter neurons of the intact dorsal root ganglion (DRG). Recordings from diabetic rats revealed that the abnormal hyperexcitability of neurons was greatly abolished by application of GAS. To determine which currents were involved in the antinociceptive action of gastrodin, we examined the effects of gastrodin on transient sodium currents (INaT) and potassium currents in diabetic small DRG neurons. Diabetes caused a prominent enhancement of INaT and a decrease of potassium currents, especially slowly inactivating potassium currents (IAS); these effects were completely reversed by GAS in a dose-dependent manner. Furthermore, changes in activation and inactivation kinetics of INaT and total potassium current as well as IAS currents induced by STZ were normalized by GAS. This study provides a clear cellular basis for the peripheral analgesic action of gastrodin for the treatment of chronic pain, including PDN

    Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells

    Get PDF
    Significant inroads have been made to understand cerebellar cortical processing but neural coding at the output stage of the cerebellum in the deep cerebellar nuclei (DCN) remains poorly understood. The DCN are unlikely to just present a relay nucleus because Purkinje cell inhibition has to be turned into an excitatory output signal, and DCN neurons exhibit complex intrinsic properties. In particular, DCN neurons exhibit a range of rebound spiking properties following hyperpolarizing current injection, raising the question how this could contribute to signal processing in behaving animals. Computer modeling presents an ideal tool to investigate how intrinsic voltage-gated conductances in DCN neurons could generate the heterogeneous firing behavior observed, and what input conditions could result in rebound responses. To enable such an investigation we built a compartmental DCN neuron model with a full dendritic morphology and appropriate active conductances. We generated a good match of our simulations with DCN current clamp data we recorded in acute slices, including the heterogeneity in the rebound responses. We then examined how inhibitory and excitatory synaptic input interacted with these intrinsic conductances to control DCN firing. We found that the output spiking of the model reflected the ongoing balance of excitatory and inhibitory input rates and that changing the level of inhibition performed an additive operation. Rebound firing following strong Purkinje cell input bursts was also possible, but only if the chloride reversal potential was more negative than −70 mV to allow de-inactivation of rebound currents. Fast rebound bursts due to T-type calcium current and slow rebounds due to persistent sodium current could be differentially regulated by synaptic input, and the pattern of these rebounds was further influenced by HCN current. Our findings suggest that active properties of DCN neurons could play a crucial role for signal processing in the cerebellum

    EQ-5D in Central and Eastern Europe : 2000-2015

    Get PDF
    Objective: Cost per quality-adjusted life year data are required for reimbursement decisions in many Central and Eastern European (CEE) countries. EQ-5D is by far the most commonly used instrument to generate utility values in CEE. This study aims to systematically review the literature on EQ-5D from eight CEE countries. Methods: An electronic database search was performed up to July 1, 2015 to identify original EQ-5D studies from the countries of interest. We analysed the use of EQ-5D with respect to clinical areas, methodological rigor, population norms and value sets. Results: We identified 143 studies providing 152 country-specific results with a total sample size of 81,619: Austria (n=11), Bulgaria (n=6), Czech Republic (n=18), Hungary (n=47), Poland (n=51), Romania (n=2), Slovakia (n=3) and Slovenia (n=14). Cardiovascular (20%), neurologic (16%), musculoskeletal (15%) and endocrine/nutritional/metabolic diseases (14%) were the most frequently studied clinical areas. Overall 112 (78%) of the studies reported EQ VAS results and 86 (60%) EQ-5D index scores, of which 27 (31%) did not specify the applied tariff. Hungary, Poland and Slovenia have population norms. Poland and Slovenia also have a national value set. Conclusions: Increasing use of EQ-5D is observed throughout CEE. The spread of health technology assessment activities in countries seems to be reflected in the number of EQ-5D studies. However, improvement in informed use and methodological quality of reporting is needed. In jurisdictions where no national value set is available, in order to ensure comparability we recommend to apply the most frequently used UK tariff. Regional collaboration between CEE countries should be strengthened
    corecore