14 research outputs found
Web-Based Virtual Microscopy for Parasitology: A Novel Tool for Education and Quality Assurance
Here, we describe a novel tool to observe parasites by virtual microscopy on the Internet. Microscopy-based identification of parasites is the basis for both diagnostics and epidemiological assessment of parasite burden globally. Yet, quality assessment of diagnostic parasitology laboratories is difficult, as delivering identical educational specimens has been impossible. In this study, a series of parasite specimens on ordinary glass slides were digitized using a recently developed microscope scanner technique. Up to 50,000 images captured at high magnification are digitally stitched together to form a representation of the entire glass slide. These “virtual slides” digitized at a thousand-fold magnification can hold more than 60 gigabytes of data. Handling such large amounts of data was made possible because of efficient compression techniques and a viewing system adopted from the geospatial imaging industry. Viewing the samples on the Internet very much resembles, for example, the use of Google Maps, and puts only modest requirements on the viewer's computer. In addition, we captured image stacks at different focal planes, and developed a web-based viewing system for three-dimensional navigation in the specimens. This novel technique is especially valuable for detailed visualization of large objects such as helminth eggs in stool specimens
Regulatory regions of the paraoxonase 1 (PON1) gene are associated with neovascular age-related macular degeneration (AMD)
Physiological stress response and oxidative damage are factors for aging processes and, as such, are thought to contribute to neovascular age-related macular degeneration (AMD). Paraoxonase 1 (PON1) is an enzyme that plays an important role in oxidative stress and aging. We investigated association of DNA sequence variants (SNP) within the upstream regulatory region of the PON1 gene with neovascular AMD in 305 patients and 288 controls. Four of the seven tested SNPs (rs705379, rs705381, rs854573, and rs757158) were more frequently found in AMD patients compared to controls (P = 0.0099, 0.0295, 0.0121, and 0.0256, respectively), and all but one (SNP rs757158) are in linkage disequilibrium. Furthermore, haplotype TGGCCTC conferred protection (odds ratio (OR) = 0.76, (CI) = 0.60-0.97) as it was more frequently found in control individuals, while haplotype CGATGCT increased the risk (OR = 1.55, CI = 1.09-2.21) for AMD. These results were also reflected when haplotypes for the untranscribed and the 5'untranslated regions (5'UTR) were analyzed separately. To assess haplotype correlation with levels of gene expression, the three SNPs within the 5'UTR were tested in a luciferase reporter assay. In retinal pigment epithelium-derived ARPE19 cells, we were able to measure significant differences in reporter levels, while this was not observed in kidney-derived HEK293 cells. The presence of the risk allele A (SNP rs705381) caused an increase in luciferase activity of approximately twofold. Our data support the view that inflammatory reactions mediated through anti-oxidative activity may be relevant to neovascular age-related macular degeneration