21 research outputs found

    Genetic drivers of heterogeneity in type 2 diabetes pathophysiology.

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care

    Gyne—Lotrimin® (Schering)

    No full text

    SECRETORY AND BIOSYNTHETIC RESPONSES OF GASTRIN AND SOMATOSTATIN TO ACUTE CHANGES IN GASTRIC-ACIDITY

    No full text
    The activity of gastric parietal cells in terms of hydrochloric acid (HCl) secretion is regulated by the interaction of stimulatory substances (e.g. gastrin) and inhibitors (e.g. somatostatin) acting in an endocrine and paracrine mode, as well as luminal factors. In the present study the following parameters were measured: the synthesis (mRNA), storage (tissue peptide concentration) and secretion (plasma peptide concentration) of somatostatin and gastrin following short-term treatment of rats with pentagastrin (acid stimulant), secretin, omeprazole (reduces gastric acidity by inactivating gastric H/K ATPase) and the somatostatin analogue octreotide (reduces gastric acidity by inhibiting both the parietal cell and gastrin). The mRNA coding for H/K ATPase and carbonic anhydrase II (CA II), the two enzymes responsible for the generation of hydrogen ions from the parietal cell, were also quantitated. In response to octreotide, somatostatin peptide and mRNA levels in the fundus rose to 180 +/- 16% (P < 0.001) and 1073 +/- 356% (P < 0.05) of control, respectively. In contrast, octreotide caused a decrease in antral somatostatin peptide and its mRNA did not change significantly. No significant changes in synthesis, secretion or storage of gastrin were observed except for omeprazole induced hypergastrinaemia (580 +/- 76%, P < 0.001). H/K ATPase and CA II mRNA were largely unaffected except for an increase in CA II mRNA following octreotide and a decrease in H/K ATPase mRNA after pentagastrin. These data support the concept of the differential control of antral and fundic somatostatin synthesis and provide evidence for a regulatory loop by which somatostatin can influence its own synthesis.(ABSTRACT TRUNCATED AT 250 WORDS
    corecore