265 research outputs found

    Transcriptomic, proteomic and metabolomic analysis of UV-B signaling in maize

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Under normal solar fluence, UV-B damages macromolecules, but it also elicits physiological acclimation and developmental changes in plants. Excess UV-B decreases crop yield. Using a treatment twice solar fluence, we focus on discovering signals produced in UV-B-irradiated maize leaves that translate to systemic changes in shielded leaves and immature ears.</p> <p>Results</p> <p>Using transcriptome and proteomic profiling, we tracked the kinetics of transcript and protein alterations in exposed and shielded organs over 6 h. In parallel, metabolic profiling identified candidate signaling molecules based on rapid increase in irradiated leaves and increased levels in shielded organs; pathways associated with the synthesis, sequestration, or degradation of some of these potential signal molecules were UV-B-responsive. Exposure of just the top leaf substantially alters the transcriptomes of both irradiated and shielded organs, with greater changes as additional leaves are irradiated. Some phenylpropanoid pathway genes are expressed only in irradiated leaves, reflected in accumulation of pathway sunscreen molecules. Most protein changes detected occur quickly: approximately 92% of the proteins in leaves and 73% in immature ears changed after 4 h UV-B were altered by a 1 h UV-B treatment.</p> <p>Conclusions</p> <p>There were significant transcriptome, proteomic, and metabolomic changes under all conditions studied in both shielded and irradiated organs. A dramatic decrease in transcript diversity in irradiated and shielded leaves occurs between 0 h and 1 h, demonstrating the susceptibility of plants to short term UV-B spikes as during ozone depletion. Immature maize ears are highly responsive to canopy leaf exposure to UV-B.</p

    Soluble receptor for advanced glycation end products in COPD: relationship with emphysema and chronic cor pulmonale: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The receptor for advanced glycation end products (RAGE) is a multiligand signal transduction receptor that can initiate and perpetuate inflammation. Its soluble isoform (sRAGE) acts as a decoy receptor for RAGE ligands, and is thought to afford protection against inflammation. With the present study, we aimed at determining whether circulating sRAGE is correlated with emphysema and chronic cor pulmonale in chronic obstructive pulmonary disease (COPD).</p> <p>Methods</p> <p>In 200 COPD patients and 201 age- and sex-matched controls, we measured lung function by spirometry, and sRAGE by ELISA method. We also measured the plasma levels of two RAGE ligands, N-epsilon-carboxymethyl lysine and S100A12, by ELISA method. In the COPD patients, we assessed the prevalence and severity of emphysema by computed tomography (CT), and the prevalence of chronic cor pulmonale by echocardiography. Multiple quantile regression was used to assess the effects of emphysema, chronic cor pulmonale, smoking history, and comorbid conditions on the three quartiles of sRAGE.</p> <p>Results</p> <p>sRAGE was significantly lower (p = 0.007) in COPD patients (median 652 pg/mL, interquartile range 484 to 1076 pg/mL) than in controls (median 869 pg/mL, interquartile range 601 to 1240 pg/mL), and was correlated with the severity of emphysema (p < 0.001), the lower the level of sRAGE the greater the degree of emphysema on CT. The relationship remained statistically significant after adjusting for smoking history and comorbid conditions. In addition, sRAGE was significantly lower in COPD patients with chronic cor pulmonale than in those without (p = 0.002). Such difference remained statistically significant after adjusting for smoking history, comorbidities, and emphysema severity. There was no significant difference in the plasma levels of the two RAGE ligands between cases and controls.</p> <p>Conclusions</p> <p>sRAGE is significantly lower in patients with COPD than in age- and sex-matched individuals without airflow obstruction. Emphysema and chronic cor pulmonale are independent predictors of reduced sRAGE in COPD.</p

    Clathrin and LRP-1-Independent Constitutive Endocytosis and Recycling of uPAR

    Get PDF
    Background: The urokinase receptor (uPAR/CD87) is highly expressed in malignant tumours. uPAR, as a GPI anchored protein, is preferentially located at the cell surface, where it interacts with its ligands urokinase (uPA) and the extracellular matrix protein vitronectin, thus promoting plasmin generation, cell-matrix interactions and intracellular signalling events. Interaction with a complex formed by uPA and its inhibitor PAI-1 induces cell surface down regulation and recycling of the receptor via the clathrin-coated pathway, a process dependent on the association to LRP-1. Methodology/Principal Findings: In this study, we have found that along with the ligand-induced down-regulation, uPAR also internalizes and recycles constitutively through a second pathway that is independent of LRP-1 and clathrin but shares some properties with macropinocytosis. The ligand-independent route is amiloride-sensitive, does not require uPAR partitioning into lipid rafts, is independent of the activity of small GTPases RhoA, Rac1 and Cdc42, and does not require PI3K activity. Constitutively endocytosed uPAR is found in EEA1 positive early/recycling endosomes but does not reach lysosomes in the absence of ligands. Electron microscopy analysis reveals the presence of uPAR in ruffling domains at the cell surface, in macropinosome-like vesicles and in endosomal compartments. Conclusions/Significance: These results indicate that, in addition to the ligand-induced endocytosis of uPAR, efficient surface expression and membrane trafficking might also be driven by an uncommon macropinocytic mechanism couple

    Alternating irinotecan with oxaliplatin combined with UFT plus leucovorin (SCOUT) in metastatic colorectal cancer

    Get PDF
    Tegafurโ€“uracil (UFT) plus leucovorinยฎ (LV, folinic acid) with alternating irinotecan and oxaliplatin were effective and well tolerated in patients with metastatic colorectal cancer (mCRC) in a phase I study. This study expanded the maximum tolerated dose group. Patients aged โฉพ18 years had histologically confirmed, inoperable, previously untreated, measurable mCRC. Patients received irinotecan 180โ€‰mgโ€‰mโˆ’2 on day 1, oxaliplatin 100โ€‰mgโ€‰mโˆ’2 on day 15 and UFT 250โ€‰mgโ€‰mโˆ’2 plus LV 90โ€‰mg on days 1โ€“21 every 28 days. The phase I/II study comprised 45 patients, 29 at the maximum tolerated dose (MTD). The response rate in 38 evaluable patients was 63% (95% confidence interval (CI): 49โ€“80). Median time to progression and overall survival were 8.7 months (95% CI: 7.9โ€“10.4) and 16.8 months (95% CI: 9.6โ€“25.3), respectively. In the MTD group, one patient had grade 3 leucopaenia; one had grade 3 neutropaenia; three had grade 3 diarrhoea; and one had grade 3 neurotoxicity. No handโ€“foot syndrome grade >1 was seen. In total, 67% of eligible patients received second-line therapy. UFT plus LV with alternating irinotecan and oxaliplatin is an efficacious first-line treatment for mCRC, with minimal neurotoxicity and handโ€“foot syndrome

    Mouse mammary tumors display Stat3 activation dependent on leukemia inhibitory factor signaling

    Get PDF
    Introduction: It has been demonstrated that leukemia inhibitory factor (LIF) induces epithelium apoptosis through Stat3 activation during mouse mammary gland involution. In contrast, it has been shown that this transcription factor is commonly activated in breast cancer cells, although what causes this effect remains unknown. Here we have tested the hypothesis that locally produced LIF can be responsible for Stat3 activation in mouse mammary tumors. Methods: The studies were performed in different tumorigenic and non-tumorigenic mammary cells. The expression of LIF and LIF receptor was tested by RT-PCR analysis. In tumors, LIF and Stat3 proteins were analyzed by immunohistochemistry, whereas Stat3 and extracellular signal-regulated kinase (ERK)1/2 expression and phosphorylation were studied by Western blot analysis. A LIF-specific blocking antibody was used to determine whether this cytokine was responsible for Stat3 phosphorylation induced by conditioned medium. Specific pharmacological inhibitors (PD98059 and Stat3ip) that affect ERK1/2 and Stat3 activation were used to study their involvement in LIF-induced effects. To analyze cell survival, assays with crystal violet were performed. Results: High levels of LIF expression and activated Stat3 were found in mammary tumors growing in vivo and in their primary cultures. We found a single mouse mammary tumor cell line, LM3, that showed low levels of activated Stat3. Incidentally, these cells also showed very little expression of LIF receptor. This suggested that autocrine/paracrine LIF would be responsible for Stat3 activation in mouse mammary tumors. This hypothesis was confirmed by the ability of conditioned medium of mammary tumor primary cultures to induce Stat3 phosphorylation, activity that was prevented by pretreatment with LIF-blocking antibody. Besides, we found that LIF increased tumor cell viability. Interestingly, blocking Stat3 activation enhanced this effect in mammary tumor cells. Conclusion: LIF is overexpressed in mouse mammary tumors, where it acts as the main Stat3 activator. Interestingly, the positive LIF effect on tumor cell viability is not dependent on Stat3 activation, which inhibits tumor cell survival as it does in normal mammary epithelium. ยฉ 2007 Quaglino et al.; licensee BioMed Central Ltd.Fil:Quaglino, A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Schere-Levy, C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Romorini, L. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Kordon, E.C. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Phenotype Fingerprinting Suggests the Involvement of Single-Genotype Consortia in Degradation of Aromatic Compounds by Rhodopseudomonas palustris

    Get PDF
    Anaerobic degradation of complex organic compounds by microorganisms is crucial for development of innovative biotechnologies for bioethanol production and for efficient degradation of environmental pollutants. In natural environments, the degradation is usually accomplished by syntrophic consortia comprised of different bacterial species. This strategy allows consortium organisms to reduce efforts required for maintenance of the redox homeostasis at each syntrophic level. Cellular mechanisms that maintain the redox homeostasis during the degradation of aromatic compounds by one organism are not fully understood. Here we present a hypothesis that the metabolically versatile phototrophic bacterium Rhodopseudomonas palustris forms its own syntrophic consortia, when it grows anaerobically on p-coumarate or benzoate as a sole carbon source. We have revealed the consortia from large-scale measurements of mRNA and protein expressions under p-coumarate, benzoate and succinate degrading conditions using a novel computational approach referred as phenotype fingerprinting. In this approach, marker genes for known R. palustris phenotypes are employed to determine the relative expression levels of genes and proteins in aromatics versus non-aromatics degrading condition. Subpopulations of the consortia are inferred from the expression of phenotypes and known metabolic modes of the R. palustris growth. We find that p-coumarate degrading conditions may lead to at least three R. palustris subpopulations utilizing p-coumarate, benzoate, and CO2 and H2. Benzoate degrading conditions may also produce at least three subpopulations utilizing benzoate, CO2 and H2, and N2 and formate. Communication among syntrophs and inter-syntrophic dynamics in each consortium are indicated by up-regulation of transporters and genes involved in the curli formation and chemotaxis. The N2-fixing subpopulation in the benzoate degrading consortium has preferential activation of the vanadium nitrogenase over the molybdenum nitrogenase. This subpopulation in the consortium was confirmed in an independent experiment by consumption of dissolved nitrogen gas under the benzoate degrading conditions

    Phase II study of capecitabine and irinotecan combination chemotherapy in patients with advanced gastric cancer

    Get PDF
    The present study was conducted to evaluate the efficacy and safety of a combination regimen of capecitabine plus irinotecan in patients with advanced gastric cancer. Patients with previously untreated metastatic or recurrent, measurable gastric cancer received oral capecitabine 1000โ€‰mgโ€‰mโˆ’2 twice daily from day 1 to 14 and intravenous irinotecan 100โ€‰mgโ€‰mโˆ’2 on days 1 and 8, based on a 3-week cycle. Forty-one patients were enrolled in the current study, among whom 38 were assessable for efficacy and 40 assessable for toxicity. Three complete responses and 16 partial responses were confirmed, giving an overall response rate of 46.3%. At a median follow-up of 269 days, the median time to progression and overall survival were 5.1 and 8.6 months, respectively. Grade 3/4 neutropenia occurred in four patients and grade 3 febrile neutropenia was observed in two patients. Grade 3 diarrhoea and grade 2 handโ€“foot syndrome occurred in six patients and eight patients, respectively. The combination of capecitabine and irinotecan was found to be well tolerated and effective in patients with advanced gastric cancer. Accordingly, this regimen can be regarded as one of first-line treatment options for advanced gastric cancer

    A phase I clinical and pharmacokinetic study of capecitabine (Xelodaยฎ) and irinotecan combination therapy (XELIRI) in patients with metastatic gastrointestinal tumours

    Get PDF
    Capecitabine is a highly active oral fluoropyrimidine that is an attractive alternative to 5-fluorouracil in colorectal cancer treatment. The current study, undertaken in 27 patients with gastrointestinal tumours, aimed to assess the toxicity and potential for significant pharmacokinetic interactions of a combination regimen incorporating capecitabine with 3-weekly irinotecan (XELIRI). Irinotecan (200 and 250โ€‰mgโ€‰mโˆ’2) was administered as a 90-min infusion on day 1 in combination with escalating capecitabine doses (700โ€“1250โ€‰mgโ€‰mโˆ’2 twice daily) administered on days 2โ€“15 of a 3-week treatment cycle. Pharmacokinetics were characterised on days 1 and 2 of the first two cycles. A total of 103 treatment cycles were administered. The principal dose-limiting toxicities were diarrhoea and neutropenia. Capecitabine 1150โ€‰mgโ€‰mโˆ’2 twice daily with irinotecan 250โ€‰mgโ€‰mโˆ’2 was identified as the maximum-tolerated dose and capecitabine 1000โ€‰mgโ€‰mโˆ’2 with irinotecan 250โ€‰mgโ€‰mโˆ’2 was identified as the recommended dose for further study. Analyses confirmed that there were no significant pharmacokinetic interactions between the two agents. The combination was clinically active, with complete and partial responses achieved in heavily pretreated patients. This study indicates that XELIRI is a potentially feasible and clinically active regimen in patients with advanced gastrointestinal cancer
    • โ€ฆ
    corecore