13 research outputs found

    The influence of Phaeocystis globosa on microscale spatial patterns of chlorophyll a and bulk-phase seawater viscosity

    No full text
    A two-dimensional microscale (5 cm resolution) sampler was used over the course of a phytoplankton spring bloom dominated by Phaeocystis globosa to investigate the structural properties of chlorophyll a and seawater excess viscosity distributions. The microscale distribution patterns of chlorophyll a and excess viscosity were never uniform nor random. Instead they exhibited different types and levels of aggregated spatial patterns that were related to the dynamics of the bloom. The chlorophyll a and seawater viscosity correlation patterns were also controlled by the dynamics of the bloom with positive and negative correlations before and after the formation of foam in the turbulent surf zone. The ecological relevance and implications of the observed patchiness and biologically induced increase in seawater viscosity are discussed and the combination of the enlarged colonial form and mucus secretion is suggested as a competitive advantage of P. globosa in highly turbulent environments where this species flourishes. © 2007 Springer Science+Business Media, Inc

    Contrasting patterns in the vertical distribution of decapod crustaceans throughout ontogeny

    No full text
    In marine ecosystems, the most significant migration observed in terms of biomass distribution is the one connected with the vertical movements in the water column. In the present study, the vertical profiles of the mesopelagic shrimps Gennadas elegans, Eusergestes arcticus, Sergia robusta, and the epipelagic Parasergestes vigilax in the Balearic Sea (western Mediterranean), during the stratified (summer) and non-stratified (autumn) hydrographic conditions, were investigated through their ontogeny, from the larval to adult stages. The mesopelagic adults were observed to move down to the deeper layers during the night more than during the daylight hours. Most larvae aggregated within the limits of the upper water column. The P. vigilax larvae were collected only during the stratified period. The first two larval stages vertical distribution indicates that the mesopelagic crustacean spawning could occur at greater depths. During the non-stratified period, the larvae of the mesopelagic species tended to remain at about 500 m depth at night, rising towards the upper layers at sunrise. Vertical patterns are discussed, as strategies associated with predator–prey trade-offs. To our knowledge, the present study is the first such attempt to jointly analyze the vertical migrations of the developmental stages of the pelagic shrimps in the Mediterranean SeaVersión del editor1,78

    Key Questions and Recent Research Advances on Harmful Algal Blooms in Stratified Systems

    No full text
    22 pages, 5 figuresThe GEOHAB Core Research Project (CRP) on HABs in Stratified Systems was a crosscutting project focused on the relevance of physical structure to fundamental life processes of harmful microorganisms such as growth (together with nutrient and light availability), reproduction, life cycle, and ecological interactions. Advances in this area have heavily depended on the development of innovative instruments to observe and adequately sample these environments, as well as on improvements in numerical modelling techniques (GEOHAB 2011, 2013; Berdalet et al. 2014). [...]Peer reviewe
    corecore