19 research outputs found

    Biallelic SQSTM1 mutations in early-onset, variably progressive neurodegeneration.

    Get PDF
    OBJECTIVE: To characterize clinically and molecularly an early-onset, variably progressive neurodegenerative disorder characterized by a cerebellar syndrome with severe ataxia, gaze palsy, dyskinesia, dystonia, and cognitive decline affecting 11 individuals from 3 consanguineous families. METHODS: We used whole-exome sequencing (WES) (families 1 and 2) and a combined approach based on homozygosity mapping and WES (family 3). We performed in vitro studies to explore the effect of the nontruncating SQSTM1 mutation on protein function and the effect of impaired SQSTM1 function on autophagy. We analyzed the consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in vivo using zebrafish as a model. RESULTS: We identified 3 homozygous inactivating variants, including a splice site substitution (c.301+2T>A) causing aberrant transcript processing and accelerated degradation of a resulting protein lacking exon 2, as well as 2 truncating changes (c.875_876insT and c.934_936delinsTGA). We show that loss of SQSTM1 causes impaired production of ubiquitin-positive protein aggregates in response to misfolded protein stress and decelerated autophagic flux. The consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in zebrafish documented a variable but reproducible phenotype characterized by cerebellum anomalies ranging from depletion of axonal connections to complete atrophy. We provide a detailed clinical characterization of the disorder; the natural history is reported for 2 siblings who have been followed up for >20 years. CONCLUSIONS: This study offers an accurate clinical characterization of this recently recognized neurodegenerative disorder caused by biallelic inactivating mutations in SQSTM1 and links this phenotype to defective selective autophagy

    Visualization of acetylcholine distribution in central nervous system tissue sections by tandem imaging mass spectrometry

    Get PDF
    Metabolite distribution imaging via imaging mass spectrometry (IMS) is an increasingly utilized tool in the field of neurochemistry. As most previous IMS studies analyzed the relative abundances of larger metabolite species, it is important to expand its application to smaller molecules, such as neurotransmitters. This study aimed to develop an IMS application to visualize neurotransmitter distribution in central nervous system tissue sections. Here, we raise two technical problems that must be resolved to achieve neurotransmitter imaging: (1) the lower concentrations of bioactive molecules, compared with those of membrane lipids, require higher sensitivity and/or signal-to-noise (S/N) ratios in signal detection, and (2) the molecular turnover of the neurotransmitters is rapid; thus, tissue preparation procedures should be performed carefully to minimize postmortem changes. We first evaluated intrinsic sensitivity and matrix interference using Matrix Assisted Laser Desorption/Ionization (MALDI) mass spectrometry (MS) to detect six neurotransmitters and chose acetylcholine (ACh) as a model for study. Next, we examined both single MS imaging and MS/MS imaging for ACh and found that via an ion transition from m/z 146 to m/z 87 in MS/MS imaging, ACh could be visualized with a high S/N ratio. Furthermore, we found that in situ freezing method of brain samples improved IMS data quality in terms of the number of effective pixels and the image contrast (i.e., the sensitivity and dynamic range). Therefore, by addressing the aforementioned problems, we demonstrated the tissue distribution of ACh, the most suitable molecular specimen for positive ion detection by IMS, to reveal its localization in central nervous system tissues

    Multipoint genome-wide linkage scan for nonword repetition in a multigenerational family further supports chromosome 13q as a locus for verbal trait disorders

    Get PDF
    Verbal trait disorders encompass a wide range of conditions and are marked by deficits in five domains that impair a person’s ability to communicate: speech, language, reading, spelling, and writing. Nonword repetition is a robust endophenotype for verbal trait disorders that is sensitive to cognitive processes critical to verbal development, including auditory processing, phonological working memory, and motor planning and programming. In the present study, we present a six-generation extended pedigree with a history of verbal trait disorders. Using genome-wide multipoint variance component linkage analysis of nonword repetition, we identified a region spanning chromosome 13q14–q21 with LOD = 4.45 between 52 and 55 cM, spanning approximately 5.5 Mb on chromosome 13. This region overlaps with SLI3, a locus implicated in reading disability in families with a history of specific language impairment. Our study of a large multigenerational family with verbal trait disorders further implicates the SLI3 region in verbal trait disorders. Future studies will further refine the specific causal genetic factors in this locus on chromosome 13q that contribute to language traits. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00439-016-1717-z) contains supplementary material, which is available to authorized users

    An improved LC-S/MS method for the quantitation of adenosine concentration in mice brain microdialysates.

    No full text
    A sensitive liquid chromatography tandem mass spectrometry (LC\u2013MS/MS) method for the determination of adenosine concentrations in mouse brain microdialysis samples was developed. High method sensitivity (LLOQ of 1.25 fmol) was achieved by on-line switching column. A C18 was employed as enrichment column and a cyano based (CN-SB) as analytical column. The method was fully validated for its sensitivity, selectivity, matrix effect and stability. It was successfully applied to measure quantitatively adenosine in brain of freely moving mice after different stimuli

    Simultaneous measurement of adenosine, dopamine, acetylcholine and 5-hydroxytryptamine in cerebral mice microdialysis samples by LC–ESI-MS/MS

    No full text
    A rapid and sensitive liquid chromatography/tandem mass spectrometry (LC–MS/MS) method has been developed for the simultaneous measurement of adenosine (ADE), dopamine (DA), acetylcholine (ACh) and 5-hydroxytryptamine (5-HT) in mouse brain microdialysates. High method sensitivity (LLOQ of 0.05 nM) was achieved by optimization of chromatographic and mass spectrometric parameters. The method was fully validated for its sensitivity, selectivity, matrix effect and stability. The LC–MS/MS method was successfully applied to evaluate the effect of the systemic administration of cocaine or amphetamine on the extracellular levels of ADE, DA, ACh and 5-HT in the mouse nucleus accumbens by microdialysis

    Oral lichenoid tissue reactions: diagnosis and classification

    No full text
    corecore