80 research outputs found

    Systematic review of worldwide variations of the prevalence of wheezing symptoms in children

    Get PDF
    Background: Considerable variation in the prevalence of childhood asthma and its symptoms (wheezing) has been observed in previous studies and there is evidence that the prevalence has been increasing over time. Methods: We have systematically reviewed the reported prevalence and time trends of wheezing symptoms among children, worldwide and within the same country over time. All studies comprising more than 1000 persons and meeting certain other quality criteria published over a 16-year period, between January 1990 and December 2005, are reported and a comparison of ISAAC (International Study of Asthma and Allergies in Childhood) and non-ISAAC studies is made, in part as a way of expanding the power to examine time trends (the older studies tend to be non-ISAAC), but also to examine possible methodological differences between ISAAC and non-ISAAC questions. Results: A wide range of current prevalence of wheeze was observed between and within countries over time. The UK had the highest recorded prevalence of 32.2% in children aged 13–14 in 1994–5 and Ethiopia had the lowest prevalence, 1.7% in children aged 10–19 in 1996. All studies in Australia and the UK were compared using multiple logistic regression. ISAAC phase I and III studies reported significantly higher prevalence of current wheeze (OR = 1.638) compared with non-ISAAC studies, after adjusting for various other factors (country, survey year, age of child, parental vs child response to the survey). Australia showed a significantly higher prevalence of current wheezing (OR = 1.343) compared with the UK, there was a significant increase in the prevalence odds ratio per survey year (2.5% per year), a significant decrease per age of child (0.7% per year), and a significantly higher response in current wheezing if the response was self-completed by the child (OR = 1.290). These factors, when explored separately for ISAAC and non-ISAAC studies, showed very different results. In ISAAC studies, or non-ISAAC studies using ISAAC questions, there was a significant decrease in current wheezing prevalence over time (2.5% per year). In non-ISAAC studies, which tend to cover an earlier period, there was a significant increase (2.6% per year) in current wheezing prevalence over time. This is very likely to be a result of prevalence of wheezing increasing from the 1970s up to the early 1990s, but decreasing since then. Conclusion: The UK has the highest recorded prevalence of wheezing and Ethiopia the lowest. Prevalence of wheezing in Australia and the UK has increased from the 1970s up to the early 1990s, but decreased since then and ISAAC studies report significantly higher prevalences than non-ISAAC studies

    Double Dissociation of Amygdala and Hippocampal Contributions to Trace and Delay Fear Conditioning

    Get PDF
    A key finding in studies of the neurobiology of learning memory is that the amygdala is critically involved in Pavlovian fear conditioning. This is well established in delay-cued and contextual fear conditioning; however, surprisingly little is known of the role of the amygdala in trace conditioning. Trace fear conditioning, in which the CS and US are separated in time by a trace interval, requires the hippocampus and prefrontal cortex. It is possible that recruitment of cortical structures by trace conditioning alters the role of the amygdala compared to delay fear conditioning, where the CS and US overlap. To investigate this, we inactivated the amygdala of male C57BL/6 mice with GABA A agonist muscimol prior to 2-pairing trace or delay fear conditioning. Amygdala inactivation produced deficits in contextual and delay conditioning, but had no effect on trace conditioning. As controls, we demonstrate that dorsal hippocampal inactivation produced deficits in trace and contextual, but not delay fear conditioning. Further, pre- and post-training amygdala inactivation disrupted the contextual but the not cued component of trace conditioning, as did muscimol infusion prior to 1- or 4-pairing trace conditioning. These findings demonstrate that insertion of a temporal gap between the CS and US can generate amygdala-independent fear conditioning. We discuss the implications of this surprising finding for current models of the neural circuitry involved in fear conditioning

    Robust Reproducible Resting State Networks in the Awake Rodent Brain

    Get PDF
    Resting state networks (RSNs) have been studied extensively with functional MRI in humans in health and disease to reflect brain function in the un-stimulated state as well as reveal how the brain is altered with disease. Rodent models of disease have been used comprehensively to understand the biology of the disease as well as in the development of new therapies. RSN reported studies in rodents, however, are few, and most studies are performed with anesthetized rodents that might alter networks and differ from their non-anesthetized state. Acquiring RSN data in the awake rodent avoids the issues of anesthesia effects on brain function. Using high field fMRI we determined RSNs in awake rats using an independent component analysis (ICA) approach, however, ICA analysis can produce a large number of components, some with biological relevance (networks). We further have applied a novel method to determine networks that are robust and reproducible among all the components found with ICA. This analysis indicates that 7 networks are robust and reproducible in the rat and their putative role is discussed

    Mammal-Like Organization of the Avian Midbrain Central Gray and a Reappraisal of the Intercollicular Nucleus

    Get PDF
    In mammals, rostrocaudal columns of the midbrain periaqueductal gray (PAG) regulate diverse behavioral and physiological functions, including sexual and fight-or-flight behavior, but homologous columns have not been identified in non-mammalian species. In contrast to mammals, in which the PAG lies ventral to the superior colliculus and surrounds the cerebral aqueduct, birds exhibit a hypertrophied tectum that is displaced laterally, and thus the midbrain central gray (CG) extends mediolaterally rather than dorsoventrally as in mammals. We therefore hypothesized that the avian CG is organized much like a folded open PAG. To address this hypothesis, we conducted immunohistochemical comparisons of the midbrains of mice and finches, as well as Fos studies of aggressive dominance, subordinance, non-social defense and sexual behavior in territorial and gregarious finch species. We obtained excellent support for our predictions based on the folded open model of the PAG and further showed that birds possess functional and anatomical zones that form longitudinal columns similar to those in mammals. However, distinguishing characteristics of the dorsal/dorsolateral PAG, such as a dense peptidergic innervation, a longitudinal column of neuronal nitric oxide synthase neurons, and aggression-induced Fos responses, do not lie within the classical avian CG, but in the laterally adjacent intercollicular nucleus (ICo), suggesting that much of the ICo is homologous to the dorsal PAG

    Agouti-related peptide neural circuits mediate adaptive behaviors in the starved state

    Get PDF
    In the face of starvation, animals will engage in high-risk behaviors that would normally be considered maladaptive. Starving rodents, for example, will forage in areas that are more susceptible to predators and will also modulate aggressive behavior within a territory of limited or depleted nutrients. The neural basis of these adaptive behaviors likely involves circuits that link innate feeding, aggression and fear. Hypothalamic agouti-related peptide (AgRP)-expressing neurons are critically important for driving feeding and project axons to brain regions implicated in aggression and fear. Using circuit-mapping techniques in mice, we define a disynaptic network originating from a subset of AgRP neurons that project to the medial nucleus of the amygdala and then to the principal bed nucleus of the stria terminalis, which suppresses territorial aggression and reduces contextual fear. We propose that AgRP neurons serve as a master switch capable of coordinating behavioral decisions relative to internal state and environmental cues
    corecore