35 research outputs found

    Effect of exogenous surfactants on viability and DNA synthesis in A549, immortalized mouse type II and isolated rat alveolar type II cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In mechanically ventilated preterm infants with respiratory distress syndrome (RDS), exogenous surfactant application has been demonstrated both to decrease DNA-synthesis but also and paradoxically to increase epithelial cell proliferation. However, the effect of exogenous surfactant has not been studied directly on alveolar type II cells (ATII cells), a key cell type responsible for alveolar function and repair.</p> <p>Objective</p> <p>The aim of this study was to investigate the effects of two commercially available surfactant preparations on ATII cell viability and DNA synthesis.</p> <p>Methods</p> <p>Curosurf<sup>® </sup>and Alveofact<sup>® </sup>were applied to two ATII cell lines (human A549 and mouse iMATII cells) and to primary rat ATII cells for periods of up to 24 h. Cell viability was measured using the redox indicator resazurin and DNA synthesis was measured using BrdU incorporation.</p> <p>Results</p> <p>Curosurf<sup>® </sup>resulted in slightly decreased cell viability in all cell culture models. However, DNA synthesis was increased in A549 and rat ATII cells but decreased in iMATII cells. Alveofact<sup>® </sup>exhibited the opposite effects on A549 cells and had very mild effects on the other two cell models.</p> <p>Conclusion</p> <p>This study showed that commercially available exogenous surfactants used to treat preterm infants with RDS can have profound effects on cell viability and DNA synthesis.</p

    Protective Immunity to Mycobacterium tuberculosis Infection by Chemokine and Cytokine Conditioned CFP-10 Differentiated Dendritic Cells

    Get PDF
    BACKGROUND: Dendritic cells (DCs) play major roles in mediating immune responses to mycobacteria. A crucial aspect of this is the priming of T cells via chemokines and cytokines. In this study we investigated the roles of chemokines RANTES and IP-10 in regulating protective responses from Mycobacterium tuberculosis (M. tb) 10 kDa Culture Filtrate Protein-10 (CFP-10) differentiated DCs (CFP10-DCs). METHODS AND FINDINGS: Infection of CFP10-DCs with mycobacteria down-modulated RANTES and IP-10 levels. Pathway specific microarray analyses showed that in addition to RANTES and IP-10, mycobacteria infected CFP10-DCs showed reduced expression of many Th1 promoting chemokines and chemokine receptors. Importantly, T cells co-cultured with RANTES and IP-10 conditioned CFP10-DCs mediated killing of mycobacteria from infected macrophages. Similarly, T cells recruited by RANTES and IP-10 conditioned CFP10-DCs mediated significant killing of mycobacteria from infected macrophages. IFN-gamma treatment of CFP10-DCs restored RANTES and IP-10 levels and T cells activated by these DCs mediated significant killing of virulent M. tb inside macrophages. Adoptive transfer of either RANTES and IP-10 or IL-12 and IFN-gamma conditioned CFP10-DCs cleared an established M. tb infection in mice. The extent of clearance was similar to that obtained with drug treatment. CONCLUSIONS: These results indicate that chemokine and cytokine secretion by DCs differentiated by M. tb antigens such as CFP-10 play major roles in regulating protective immune responses at sites of infection

    Pulmonary embolism: predicting disease severity.

    No full text
    Pulmonary embolism (PE) is the most common cause of acute pulmonary hypertension, yet it is commonly undiagnosed, with risk of death if not recognized promptly and managed accordingly. Patients typically present with hypoxemia and hypomania, although the presentation varies greatly, being confounded by co-morbidities such as pre-existing cardio-respiratory disease. Previous studies have demonstrated variable patient outcomes in spite of similar extent and distribution of pulmonary vascular occlusion, but the path physiological determinants of outcome remain unclear. Computational models enable exact control over many of the compounding factors leading to functional outcomes and therefore provide a useful tool to understand and assess these mechanisms. We review the current state of pulmonary blood flow models. We present a pilot study within 10 patients presenting with acute PE, where patient-derived vascular occlusions are imposed onto an existing model of the pulmonary circulation enabling predictions of resultant haemodynamic after embolus occlusion. Results show that mechanical obstruction alone is not sufficient to cause pulmonary arterial hypertension, even when up to 65 per cent of lung tissue is occluded. Blood flow is found to preferentially redistribute to the gravitationally non-dependent regions. The presence of an additional downstream occlusion is found to significantly increase pressures

    Diagnosis and management of connective tissue disease-associated interstitial lung disease in Australia and New Zealand: A position statement from the Thoracic Society of Australia and New Zealand.

    Get PDF
    Pulmonary complications in CTD are common and can involve the interstitium, airways, pleura and pulmonary vasculature. ILD can occur in all CTD (CTD-ILD), and may vary from limited, non-progressive lung involvement, to fulminant, life-threatening disease. Given the potential for major adverse outcomes in CTD-ILD, accurate diagnosis, assessment and careful consideration of therapeutic intervention are a priority. Limited data are available to guide management decisions in CTD-ILD. Autoimmune-mediated pulmonary inflammation is considered a key pathobiological pathway in these disorders, and immunosuppressive therapy is generally regarded the cornerstone of treatment for severe and/or progressive CTD-ILD. However, the natural history of CTD-ILD in individual patients can be difficult to predict, and deciding who to treat, when and with what agent can be challenging. Establishing realistic therapeutic goals from both the patient and clinician perspective requires considerable expertise. The document aims to provide a framework for clinicians to aid in the assessment and management of ILD in the major CTD. A suggested approach to diagnosis and monitoring of CTD-ILD and, where available, evidence-based, disease-specific approaches to treatment have been provided
    corecore