8 research outputs found

    Psychophysical Investigations into the Role of Low-Threshold C Fibres in Non-Painful Affective Processing and Pain Modulation

    Get PDF
    We recently showed that C low-threshold mechanoreceptors (CLTMRs) contribute to touch-evoked pain (allodynia) during experimental muscle pain. Conversely, in absence of ongoing pain, the activation of CLTMRs has been shown to correlate with a diffuse sensation of pleasant touch. In this study, we evaluated (1) the primary afferent fibre types contributing to positive (pleasant) and negative (unpleasant) affective touch and (2) the effects of tactile stimuli on tonic muscle pain by varying affective attributes and frequency parameters. Psychophysical observations were made in 10 healthy participants. Two types of test stimuli were applied: stroking stimulus using velvet or sandpaper at speeds of 0.1, 1.0 and 10.0 cm/s; focal vibrotactile stimulus at low (20 Hz) or high (200 Hz) frequency. These stimuli were applied in the normal condition (i.e. no experimental pain) and following the induction of muscle pain by infusing hypertonic saline (5%) into the tibialis anterior muscle. These observations were repeated following the conduction block of myelinated fibres by compression of sciatic nerve. In absence of muscle pain, all participants reliably linked velvet-stroking to pleasantness and sandpaper-stroking to unpleasantness (no pain). Likewise, low-frequency vibration was linked to pleasantness and high-frequency vibration to unpleasantness. During muscle pain, the application of previously pleasant stimuli resulted in overall pain relief, whereas the application of previously unpleasant stimuli resulted in overall pain intensification. These effects were significant, reproducible and persisted following the blockade of myelinated fibres. Taken together, these findings suggest the role of low-threshold C fibres in affective and pain processing. Furthermore, these observations suggest that temporal coding need not be limited to discriminative aspects of tactile processing, but may contribute to affective attributes, which in turn predispose individual responses towards excitatory or inhibitory modulation of pain

    Studying human nociceptors: from fundamentals to clinic

    No full text
    Chronic pain affects one in five of the general population and is the third most important cause of disability-adjusted life-years globally. Unfortunately, treatment remains inadequate due to poor efficacy and tolerability. There has been a failure in translating promising preclinical drug targets into clinic use. This reflects challenges across the whole drug development pathway, from preclinical models to trial design. Nociceptors remain an attractive therapeutic target: their sensitization makes an important contribution to many chronic pain states, they are located outside the blood-brain barrier, and they are relatively specific. The past decade has seen significant advances in the techniques available to study human nociceptors, including: the use of corneal confocal microscopy and biopsy samples to observe nociceptor morphology, the culture of human nociceptors (either from surgical or post-mortem tissue or using human induced pluripotent stem cell derived nociceptors), the application of high throughput technologies such as transcriptomics, the in vitro and in vivo electrophysiological characterization through microneurography, and the correlation with pain percepts provided by quantitative sensory testing. Genome editing in human induced pluripotent stem cell-derived nociceptors enables the interrogation of the causal role of genes in the regulation of nociceptor function. Both human and rodent nociceptors are more heterogeneous at a molecular level than previously appreciated, and while we find that there are broad similarities between human and rodent nociceptors there are also important differences involving ion channel function, expression, and cellular excitability. These technological advances have emphasized the maladaptive plastic changes occurring in human nociceptors following injury that contribute to chronic pain. Studying human nociceptors has revealed new therapeutic targets for the suppression of chronic pain and enhanced repair. Cellular models of human nociceptors have enabled the screening of small molecule and gene therapy approaches on nociceptor function, and in some cases have enabled correlation with clinical outcomes. Undoubtedly, challenges remain. Many of these techniques are difficult to implement at scale, current induced pluripotent stem cell differentiation protocols do not generate the full diversity of nociceptor populations, and we still have a relatively poor understanding of inter-individual variation in nociceptors due to factors such as age, sex, or ethnicity. We hope our ability to directly investigate human nociceptors will not only aid our understanding of the fundamental neurobiology underlying acute and chronic pain but also help bridge the translational gap
    corecore