18 research outputs found

    Protein Kinase C Iota Regulates Pancreatic Acinar-to-Ductal Metaplasia

    Get PDF
    Pancreatic acinar-to-ductal metaplasia (ADM) is associated with an increased risk of pancreatic cancer and is considered a precursor of pancreatic ductal adenocarcinoma. Transgenic expression of transforming growth factor alpha (TGF-α) or K-rasG12D in mouse pancreatic epithelium induces ADM in vivo. Protein kinase C iota (PKCι) is highly expressed in human pancreatic cancer and is required for the transformed growth and tumorigenesis of pancreatic cancer cells. In this study, PKCι expression was assessed in a mouse model of K-rasG12D-induced pancreatic ADM and pancreatic cancer. The ability of K-rasG12D to induce pancreatic ADM in explant culture, and the requirement for PKCι, was investigated. PKCι is elevated in human and mouse pancreatic ADM and intraepithelial neoplastic lesions in vivo. We demonstrate that K-rasG12D is sufficient to induce pancreatic ADM in explant culture, exhibiting many of the same morphologic and biochemical alterations observed in TGF-α-induced ADM, including a dependence on Notch activation. PKCι is highly expressed in both TGF-α- and K-rasG12D-induced pancreatic ADM and inhibition of PKCι significantly reduces TGF-α- and K-rasG12D-mediated ADM. Inhibition of PKCι suppresses K-rasG12D–induced MMP-7 expression and Notch activation, and exogenous MMP-7 restores K-rasG12D–mediated ADM in PKCι-depleted cells, implicating a K-rasG12D-PKCι-MMP-7 signaling axis that likely induces ADM through Notch activation. Our results indicate that PKCι is an early marker of pancreatic neoplasia and suggest that PKCι is a potential downstream target of K-rasG12D in pancreatic ductal metaplasia in vivo

    Evolution of Alternative Splicing Regulation: Changes in Predicted Exonic Splicing Regulators Are Not Associated with Changes in Alternative Splicing Levels in Primates

    Get PDF
    Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans) factors that bind to different sequence (cis) elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex ‘splicing code’. Many cis-elements have been identified, and their effects on exon inclusion levels demonstrated in reporter systems. However, the impact of interspecific differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level. Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs) on exon inclusion levels in human and chimpanzee. For this purpose, we compiled and studied comprehensive datasets of predicted ESRs, identified by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs and changes in alternative splicing levels. This observation holds across different ESR exon positions, exon lengths, and 5′ splice site strengths. We suggest that this lack of association is mainly due to the great importance of context for ESR functionality: many ESR-like motifs in primates may have little or no effect on splicing, and thus interspecific changes at short-time scales may primarily occur in these effectively neutral ESRs. These results underscore the difficulties of using current computational ESR prediction algorithms to identify truly functionally important motifs, and provide a cautionary tale for studies of the effect of SNPs on splicing in human disease

    EMT and stemness: flexible processes tuned by alternative splicing in development and cancer progression

    Full text link

    The Rac1 splice form Rac1b favors mouse colonic mucosa regeneration and contributes to intestinal cancer progression

    No full text
    International audienceWe previously have identified the ectopic expression of Rac1b, an activated and novel splice variant of Rac1, in a subset of human colorectal adenocarcinomas, as well as in inflammatory bowel diseases and in colitis mouse model. Rac1b overexpression has been further evidenced in breast, pancreatic, thyroid, ovarian, and lung cancers. In this context, the aim of our study was to investigate the physiopathological implications of Rac1b in intestinal inflammation and carcinogenesis in vivo. The ectopic expression of Rac1b was induced in mouse intestinal epithelial cells after crossing Rosa26-LSL-Rac1b and villin-Cre mice. These animals were let to age or were challenged with dextran sulfate sodium (DSS) to induce experimental colitis, or either received azoxymethane (AOM)/DSS treatment, or were bred with ApcMin/+ or Il10-/- mice to trigger intestinal tumors. Rac1b ectopic expression increased the intestinal epithelial cell proliferation and migration, enhanced the production of reactive oxygen species, and promoted the Paneth cell lineage. Although Rac1b overexpression alone was not sufficient to drive intestinal neoplasia, it enhanced Apc-dependent intestinal tumorigenesis. In the context of Il10 knockout, the Rac1b transgene strengthened colonic inflammation due to induced intestinal mucosa permeability and promoted cecum and proximal colon carcinogenesis. In contrast, Rac1b alleviated carcinogen/acute inflammation-associated colon carcinogenesis (AOM/DSS). This resulted at least partly from the early mucosal repair after resolution of inflammation. Our data highlight the critical role of Rac1b in driving wound-healing after resolution of intestinal inflammation, and in cooperating with Wnt pathway dysregulation and chronic inflammation to promote intestinal carcinogenesis
    corecore