1,062 research outputs found

    Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease

    Get PDF
    Background: Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings: We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions: We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets. © 2013 Jain et al

    NEFL mRNA Expression Level Is a Prognostic Factor for Early-Stage Breast Cancer Patients

    Get PDF
    Neurofilament, light polypeptide (NEFL) was demonstrated to be ectopically expressed in breast cancer tissues and decreased in lymph node metastases compared to the paired primary breast cancers in our previous study. Moreover, in several studies, NEFL was regarded as a tumor suppressor gene, and its loss of heterozygosity (LOH) was related to carcinogenesis and metastasis in several types of cancer. To explore the role of NEFL in the progression of breast cancer and to evaluate its clinical significance, we detected the NEFL mRNA level in normal breast tissues, primary breast cancer samples and lymph node metastases, and then analyzed the association between the NEFL expression level and several clinicopathological parameters and disease-free survival (DFS). NEFL mRNA was found to be expressed in 92.3% of breast malignancies and down-regulated in lymph node metastases compared to the paired primary tumors. NEFL mRNA level was lower in primary breast cancers with positive lymph nodes than in cancers with negative lymph nodes. Moreover, a low expression level of NEFL mRNA indicated a poor five-year DFS for early-stage breast cancer patients. Thus, NEFL mRNA is ectopically expressed in breast malignancies and could be a potential prognostic factor for early-stage breast cancer patients

    The Medical Action Ontology: A tool for annotating and analyzing treatments and clinical management of human disease

    Get PDF
    \ua9 2023Background: Navigating the clinical literature to determine the optimal clinical management for rare diseases presents significant challenges. We introduce the Medical Action Ontology (MAxO), an ontology specifically designed to organize medical procedures, therapies, and interventions. Methods: MAxO incorporates logical structures that link MAxO terms to numerous other ontologies within the OBO Foundry. Term development involves a blend of manual and semi-automated processes. Additionally, we have generated annotations detailing diagnostic modalities for specific phenotypic abnormalities defined by the Human Phenotype Ontology (HPO). We introduce a web application, POET, that facilitates MAxO annotations for specific medical actions for diseases using the Mondo Disease Ontology. Findings: MAxO encompasses 1,757 terms spanning a wide range of biomedical domains, from human anatomy and investigations to the chemical and protein entities involved in biological processes. These terms annotate phenotypic features associated with specific disease (using HPO and Mondo). Presently, there are over 16,000 MAxO diagnostic annotations that target HPO terms. Through POET, we have created 413 MAxO annotations specifying treatments for 189 rare diseases. Conclusions: MAxO offers a computational representation of treatments and other actions taken for the clinical management of patients. Its development is closely coupled to Mondo and HPO, broadening the scope of our computational modeling of diseases and phenotypic features. We invite the community to contribute disease annotations using POET (https://poet.jax.org/). MAxO is available under the open-source CC-BY 4.0 license (https://github.com/monarch-initiative/MAxO). Funding: NHGRI 1U24HG011449-01A1 and NHGRI 5RM1HG010860-04

    CYLD regulates keratinocyte differentiation and skin cancer progression in humans

    Get PDF
    CYLD is a gene mutated in familial cylindromatosis and related diseases, leading to the development of skin appendages tumors. Although the deubiquitinase CYLD is a skin tumor suppressor, its role in skin physiology is unknown. Using skin organotypic cultures as experimental model to mimic human skin, we have found that CYLD acts as a regulator of epidermal differentiation in humans through the JNK signaling pathway. We have determined the requirement of CYLD for the maintenance of epidermal polarity, keratinocyte differentiation and apoptosis. We show that CYLD overexpression increases keratinocyte differentiation while CYLD loss of function impairs epidermal differentiation. In addition, we describe the important role of CYLD in the control of human non-melanoma skin cancer progression. Our results show the reversion of the malignancy of human squamous cell carcinomas that express increased levels of CYLD, while its functional inhibition enhances the aggressiveness of these tumors which progress toward spindle cell carcinomas. We have found that the mechanisms through which CYLD regulates skin cancer progression include the control of tumor differentiation, angiogenesis and cell survival. These findings of the role of CYLD in human skin cancer prognosis make our results relevant from a therapeutic point of view, and open new avenues for exploring novel cancer therapies

    Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Incidence and trends of blastomycosis-associated hospitalizations in the United States

    Get PDF
    We used the State Inpatient Databases from the United States Agency for Healthcare Research and Quality to provide state-specific age-adjusted blastomycosis-associated hospitalization incidence throughout the entire United States. Among the 46 states studied, states within the Mississippi and Ohio River valleys had the highest age-adjusted hospitalization incidence. Specifically, Wisconsin had the highest age-adjusted hospitalization incidence (2.9 hospitalizations per 100,000 person-years). Trends were studied in the five highest hospitalization incidence states. From 2000 to 2011, blastomycosis-associated hospitalizations increased significantly in Illinois and Kentucky with an average annual increase of 4.4% and 8.4%, respectively. Trends varied significantly by state. Overall, 64% of blastomycosis-associated hospitalizations were among men and the median age at hospitalization was 53 years. This analysis provides a complete epidemiologic description of blastomycosis-associated hospitalizations throughout the endemic area in the United States

    AAPS Workshop Report: Strategies to Address Therapeutic Protein–Drug Interactions during Clinical Development

    Get PDF
    Therapeutic proteins (TPs) are increasingly combined with small molecules and/or with other TPs. However preclinical tools and in vitro test systems for assessing drug interaction potential of TPs such as monoclonal antibodies, cytokines and cytokine modulators are limited. Published data suggests that clinically relevant TP-drug interactions (TP-DI) are likely from overlap in mechanisms of action, alteration in target and/or drug-disease interaction. Clinical drug interaction studies are not routinely conducted for TPs because of the logistical constraints in study design to address pharmacokinetic (PK)- and pharmacodynamic (PD)-based interactions. Different pharmaceutical companies have developed their respective question- and/or risk-based approaches for TP-DI based on the TP mechanism of action as well as patient population. During the workshop both company strategies and regulatory perspectives were discussed in depth using case studies; knowledge gaps and best practices were subsequently identified and discussed. Understanding the functional role of target, target expression and their downstream consequences were identified as important for assessing the potential for a TP-DI. Therefore, a question-and/or risk-based approach based upon the mechanism of action and patient population was proposed as a reasonable TP-DI strategy. This field continues to evolve as companies generate additional preclinical and clinical data to improve their understanding of possible mechanisms for drug interactions. Regulatory agencies are in the process of updating their recommendations to sponsors regarding the conduct of in vitro and in vivo interaction studies for new drug applications (NDAs) and biologics license applications (BLAs)

    FRAGMATIC: A randomised phase III clinical trial investigating the effect of fragmin® added to standard therapy in patients with lung cancer

    Get PDF
    Background Venous thromboembolism (VTE) occurs when blood clots in the leg, pelvic or other deep vein (deep vein thrombosis) with or without transport of the thrombus into the pulmonary arterial circulation (pulmonary embolus). VTE is common in patients with cancer and is increased by surgery, chemotherapy, radiotherapy and disease progression. Low molecular weight heparin (LMWH) is routinely used to treat VTE and some evidence suggests that LMWH may also have an anticancer effect, by reduction in the incidence of metastases. The FRAGMATIC trial will assess the effect of adding dalteparin (FRAGMIN), a type of LMWH, to standard treatment for patients with lung cancer. Methods/Design The study design is a randomised multicentre phase III trial comparing standard treatment and standard treatment plus daily LMWH for 24 weeks in patients with lung cancer. Patients eligible for this study must have histopathological or cytological diagnosis of primary bronchial carcinoma (small cell or non-small cell) within 6 weeks of randomisation, be 18 or older, and must be willing and able to self-administer 5000 IU dalteparin by daily subcutaneous injection or have it administered to themselves or by a carer for 24 weeks. A total of 2200 patients will be recruited from all over the UK over a 3 year period and followed up for a minimum of 1 year after randomisation. Patients will be randomised to one of the two treatment groups in a 1:1 ratio, standard treatment or standard treatment plus dalteparin. The primary outcome measure of the trial is overall survival. The secondary outcome measures include venous thrombotic event (VTE) free survival, serious adverse events (SAEs), metastasis-free survival, toxicity, quality of life (QoL), levels of breathlessness, anxiety and depression, cost effectiveness and cost utility. Trial registration Current Controlled Trials ISRCTN8081276
    corecore