114 research outputs found
Nonspecific synaptic plasticity improves the recognition of sparse patterns degraded by local noise
Safaryan, K. et al. Nonspecific synaptic plasticity improves the recognition of sparse patterns degraded by local noise. Sci. Rep. 7, 46550; doi: 10.1038/srep46550 (2017). This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ © The Author(s) 2017.Many forms of synaptic plasticity require the local production of volatile or rapidly diffusing substances such as nitric oxide. The nonspecific plasticity these neuromodulators may induce at neighboring non-active synapses is thought to be detrimental for the specificity of memory storage. We show here that memory retrieval may benefit from this non-specific plasticity when the applied sparse binary input patterns are degraded by local noise. Simulations of a biophysically realistic model of a cerebellar Purkinje cell in a pattern recognition task show that, in the absence of noise, leakage of plasticity to adjacent synapses degrades the recognition of sparse static patterns. However, above a local noise level of 20 %, the model with nonspecific plasticity outperforms the standard, specific model. The gain in performance is greatest when the spatial distribution of noise in the input matches the range of diffusion-induced plasticity. Hence non-specific plasticity may offer a benefit in noisy environments or when the pressure to generalize is strong.Peer reviewe
Canonical wnt signaling activity in early stages of chick lung development
Wnt signaling pathway is an essential player during vertebrate embryonic development which has been associated with several developmental processes such as gastrulation, body axis formation and morphogenesis of numerous organs, namely the lung. Wnt proteins act through specific transmembrane receptors, which activate intracellular pathways that regulate cellular processes such as cell proliferation, differentiation and death. Morphogenesis of the fetal lung depends on epithelial-mesenchymal interactions that are governed by several growth and transcription factors that regulate cell proliferation, fate, migration and differentiation. This process is controlled by different signaling pathways such as FGF, Shh and Wnt among others. Wnt signaling is recognized as a key molecular player in mammalian pulmonary development but little is known about its function in avian lung development. The present work characterizes, for the first time, the expression pattern of several Wnt signaling members, such as wnt-1, wnt-2b, wnt-3a, wnt-5a, wnt-7b, wnt-8b, wnt-9a, lrp5, lrp6, sfrp1, dkk1, β-catenin and axin2 at early stages of chick lung development. In general, their expression is similar to their mammalian counterparts. By assessing protein expression levels of active/total β-catenin and phospho-LRP6/LRP6 it is revealed that canonical Wnt signaling is active in this embryonic tissue. In vitro inhibition studies were performed in order to evaluate the function of Wnt signaling pathway in lung branching. Lung explants treated with canonical Wnt signaling inhibitors (FH535 and PK115-584) presented an impairment of secondary branch formation after 48 h of culture along with a decrease in axin2 expression levels. Branching analysis confirmed this inhibition. Wnt-FGF crosstalk assessment revealed that this interaction is preserved in the chick lung. This study demonstrates that Wnt signaling is crucial for precise chick lung branching and further supports the avian lung as a good model for branching studies since it recapitulates early mammalian pulmonary development.Rute S. Moura was supported by a grant of ON.2 SR&TD Integrated Program (N-01-01-0124-01-07), ref: UMINHO/BPD/31/2013. The funders had no role in study design, data collection and analysis
Alvimopan for the Management of Postoperative Ileus After Bowel Resection: Characterization of Clinical Benefit by Pooled Responder Analysis
BACKGROUND: A pooled post hoc responder analysis was performed to assess the clinical benefit of alvimopan, a peripherally acting mu-opioid receptor (PAM-OR) antagonist, for the management of postoperative ileus after bowel resection.
METHODS: Adult patients who underwent laparotomy for bowel resection scheduled for opioid-based intravenous patient-controlled analgesia received oral alvimopan or placebo preoperatively and twice daily postoperatively until hospital discharge or for 7 postoperative days. The proportion of responders and numbers needed to treat (NNT) were examined on postoperative days (POD) 3-8 for GI-2 recovery (first bowel movement, toleration of solid food) and hospital discharge order (DCO) written.
RESULTS: Alvimopan significantly increased the proportion of patients with GI-2 recovery and DCO written by each POD (P \u3c 0.001 for all). More patients who received alvimopan achieved GI-2 recovery on or before POD 5 (alvimopan, 80%; placebo, 66%) and DCO written before POD 7 (alvimopan, 87%; placebo, 72%), with corresponding NNTs equal to 7.
CONCLUSIONS: On each POD analyzed, alvimopan significantly increased the proportion of patients who achieved GI-2 recovery and DCO written versus placebo and was associated with relatively low NNTs. The results of these analyses provide additional characterization and support for the overall clinical benefit of alvimopan in patients undergoing bowel resection
Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding
<p>Abstract</p> <p>Background</p> <p>Along with high affinity binding of epibatidine (<it>K</it><sub>d1</sub>≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (<it>K</it><sub>d2</sub>≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [<sup>3</sup>H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites.</p> <p>Results</p> <p>Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [<sup>3</sup>H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [<sup>3</sup>H]epibatidine binding after adding a large concentration of cold competitor. Fourth, nonspecific binding of a heterologous competitor changed estimates of high and low inhibition constants but did not change the ratio of those estimates.</p> <p>Conclusions</p> <p>Investigating the low affinity site of α4β2 nAChR with equilibrium binding when ligand depletion and nonspecific binding are present likely needs special attention to experimental design and data interpretation beyond fitting total binding data. Manipulation of maximum ligand and receptor concentrations and intentionally increasing ligand depletion are potentially helpful approaches.</p
Feasibility and Effectiveness of Basic Lymphedema Management in Leogane, Haiti, an Area Endemic for Bancroftian Filariasis
Lymphatic filariasis is a parasitic disease that is spread by mosquitoes. In tropical countries where lymphatic filariasis occurs, approximately 14 million people suffer from chronic swelling of the leg, known as lymphedema. Repeated episodes of bacterial skin infection (acute attacks) cause lymphedema to progress to its disfiguring form, elephantiasis. To help achieve the goal of eliminating lymphatic filariasis globally, the World Health Organization recommends basic lymphedema management, which emphasizes hygiene, skin care, exercise, and leg elevation. Its effectiveness in reducing acute attack frequency, as well as the role of compressive bandaging, have not been adequately evaluated in filariasis-endemic areas. Between 1995 and 1998, we studied 175 people with lymphedema of the leg in Leogane, Haiti. During Phase I of the study, when compression bandaging was used to reduce leg volume, the average acute attack rate was 1.56 episodes per year; it was greater in people who were illiterate and those who used compression bandages. After March 1997, when hygiene and skin care were emphasized and bandaging discouraged, acute attack frequency significantly decreased to 0.48 episodes per year. This study highlights the effectiveness of hygiene and skin care, as well as limitations of compressive bandaging, in managing lymphedema in filariasis-endemic areas
Assessing the feasibility of integration of self-care for filarial lymphoedema into existing community leprosy self-help groups in Nepal
Conditional Ablation of Ezh2 in Murine Hearts Reveals Its Essential Roles in Endocardial Cushion Formation, Cardiomyocyte Proliferation and Survival
Ezh2 is a histone trimethyltransferase that silences genes mainly via catalyzing trimethylation of histone 3 lysine 27 (H3K27Me3). The role of Ezh2 as a regulator of gene silencing and cell proliferation in cancer development has been extensively investigated; however, its function in heart development during embryonic cardiogenesis has not been well studied. In the present study, we used a genetically modified mouse system in which Ezh2 was specifically ablated in the mouse heart. We identified a wide spectrum of cardiovascular malformations in the Ezh2 mutant mice, which collectively led to perinatal death. In the Ezh2 mutant heart, the endocardial cushions (ECs) were hypoplastic and the endothelial-to-mesenchymal transition (EMT) process was impaired. The hearts of Ezh2 mutant mice also exhibited decreased cardiomyocyte proliferation and increased apoptosis. We further identified that the Hey2 gene, which is important for cardiomyocyte proliferation and cardiac morphogenesis, is a downstream target of Ezh2. The regulation of Hey2 expression by Ezh2 may be independent of Notch signaling activity. Our work defines an indispensible role of the chromatin remodeling factor Ezh2 in normal cardiovascular development
Spike-Timing Precision and Neuronal Synchrony Are Enhanced by an Interaction between Synaptic Inhibition and Membrane Oscillations in the Amygdala
The basolateral complex of the amygdala (BLA) is a critical component of the neural circuit regulating fear learning. During fear learning and recall, the amygdala and other brain regions, including the hippocampus and prefrontal cortex, exhibit phase-locked oscillations in the high delta/low theta frequency band (∼2–6 Hz) that have been shown to contribute to the learning process. Network oscillations are commonly generated by inhibitory synaptic input that coordinates action potentials in groups of neurons. In the rat BLA, principal neurons spontaneously receive synchronized, inhibitory input in the form of compound, rhythmic, inhibitory postsynaptic potentials (IPSPs), likely originating from burst-firing parvalbumin interneurons. Here we investigated the role of compound IPSPs in the rat and rhesus macaque BLA in regulating action potential synchrony and spike-timing precision. Furthermore, because principal neurons exhibit intrinsic oscillatory properties and resonance between 4 and 5 Hz, in the same frequency band observed during fear, we investigated whether compound IPSPs and intrinsic oscillations interact to promote rhythmic activity in the BLA at this frequency. Using whole-cell patch clamp in brain slices, we demonstrate that compound IPSPs, which occur spontaneously and are synchronized across principal neurons in both the rat and primate BLA, significantly improve spike-timing precision in BLA principal neurons for a window of ∼300 ms following each IPSP. We also show that compound IPSPs coordinate the firing of pairs of BLA principal neurons, and significantly improve spike synchrony for a window of ∼130 ms. Compound IPSPs enhance a 5 Hz calcium-dependent membrane potential oscillation (MPO) in these neurons, likely contributing to the improvement in spike-timing precision and synchronization of spiking. Activation of the cAMP-PKA signaling cascade enhanced the MPO, and inhibition of this cascade blocked the MPO. We discuss these results in the context of spike-timing dependent plasticity and modulation by neurotransmitters important for fear learning, such as dopamine
- …
