7 research outputs found

    Sponge Mass Mortalities in a Warming Mediterranean Sea: Are Cyanobacteria-Harboring Species Worse Off?

    Get PDF
    Mass mortality events are increasing dramatically in all coastal marine environments. Determining the underlying causes of mass mortality events has proven difficult in the past because of the lack of prior quantitative data on populations and environmental variables. Four-year surveys of two shallow-water sponge species, Ircinia fasciculata and Sarcotragus spinosulum, were carried out in the western Mediterranean Sea. These surveys provided evidence of two severe sponge die-offs (total mortality ranging from 80 to 95% of specimens) occurring in the summers of 2008 and 2009. These events primarily affected I. fasciculata, which hosts both phototrophic and heterotrophic microsymbionts, while they did not affect S. spinosulum, which harbors only heterotrophic bacteria. We observed a significant positive correlation between the percentage of injured I. fasciculata specimens and exposure time to elevated temperature conditions in all populations, suggesting a key role of temperature in triggering mortality events. A comparative ultrastructural study of injured and healthy I. fasciculata specimens showed that cyanobacteria disappeared from injured specimens, which suggests that cyanobacterial decay could be involved in I. fasciculata mortality. A laboratory experiment confirmed that the cyanobacteria harbored by I. fasciculata displayed a significant reduction in photosynthetic efficiency in the highest temperature treatment. The sponge disease reported here led to a severe decrease in the abundance of the surveyed populations. It represents one of the most dramatic mass mortality events to date in the Mediterranean Sea

    Estimates of Particulate Organic Carbon Flowing from the Pelagic Environment to the Benthos through Sponge Assemblages

    Get PDF
    Despite the importance of trophic interactions between organisms, and the relationship between primary production and benthic diversity, there have been few studies that have quantified the carbon flow from pelagic to benthic environments as a result of the assemblage level activity of suspension-feeding organisms. In this study, we examine the feeding activity of seven common sponge species from the Taputeranga marine reserve on the south coast of Wellington in New Zealand. We analysed the diet composition, feeding efficiency, pumping rates, and the number of food particles (specifically picoplanktonic prokaryotic cells) retained by sponges. We used this information, combined with abundance estimates of the sponges and estimations of the total amount of food available to sponges in a known volume of water (89,821 m3), to estimate: (1) particulate organic carbon (POC) fluxes through sponges as a result of their suspension-feeding activities on picoplankton; and (2) the proportion of the available POC from picoplankton that sponges consume. The most POC acquired by the sponges was from non-photosynthetic bacterial cells (ranging from 0.09 to 4.69 g C d−1 with varying sponge percentage cover from 0.5 to 5%), followed by Prochlorococcus (0.07 to 3.47 g C d−1) and then Synechococcus (0.05 to 2.34 g C d−1) cells. Depending on sponge abundance, the amount of POC that sponges consumed as a proportion of the total POC available was 0.2–12.1% for Bac, 0.4–21.3% for Prochlo, and 0.3–15.8% for Synecho. The flux of POC for the whole sponge assemblage, based on the consumption of prokaryotic picoplankton, ranged from 0.07–3.50 g C m2 d−1. This study is the first to estimate the contribution of a sponge assemblage (rather than focusing on individual sponge species) to POC flow from three groups of picoplankton in a temperate rocky reef through the feeding activity of sponges and demonstrates the importance of sponges to energy flow in rocky reef environments

    The genus Milnesium Doyère, 1840 (Tardigrada) in South America with descriptions of two new species from Argentina and discussion of the feeding behaviour in the family Milnesiidae

    No full text
    corecore