31 research outputs found

    Congenital Hypogonadotropic Hypogonadism Due to GNRH Receptor Mutations in Three Brothers Reveal Sites Affecting Conformation and Coupling

    Get PDF
    Congenital hypogonadotropic hypogonadism (CHH) is characterized by low gonadotropins and failure to progress normally through puberty. Mutations in the gene encoding the GnRH receptor (GNRHR1) result in CHH when present as compound heterozygous or homozygous inactivating mutations. This study identifies and characterizes the properties of two novel GNRHR1 mutations in a family in which three brothers display normosmic CHH while their sister was unaffected. Molecular analysis in the proband and the affected brothers revealed two novel non-synonymous missense GNRHR1 mutations, present in a compound heterozygous state, whereas their unaffected parents possessed only one inactivating mutation, demonstrating the autosomal recessive transmission in this kindred and excluding X-linked inheritance equivocally suggested by the initial pedigree analysis. The first mutation at c.845 C>G introduces an Arg substitution for the conserved Pro 282 in transmembrane domain (TMD) 6. The Pro282Arg mutant is unable to bind radiolabeled GnRH analogue. As this conserved residue is important in receptor conformation, it is likely that the mutation perturbs the binding pocket and affects trafficking to the cell surface. The second mutation at c.968 A>G introduces a Cys substitution for Tyr 323 in the functionally crucial N/DPxxY motif in TMD 7. The Tyr323Cys mutant has an increased GnRH binding affinity but reduced receptor expression at the plasma membrane and impaired G protein-coupling. Inositol phosphate accumulation assays demonstrated absent and impaired Gαq/11 signal transduction by Pro282Arg and Tyr323Cys mutants, respectively. Pretreatment with the membrane permeant GnRHR antagonist NBI-42902, which rescues cell surface expression of many GNRHR1 mutants, significantly increased the levels of radioligand binding and intracellular signaling of the Tyr323Cys mutant but not Pro282Arg. Immunocytochemistry confirmed that both mutants are present on the cell membrane albeit at low levels. Together these molecular deficiencies of the two novel GNRHR1 mutations lead to the CHH phenotype when present as a compound heterozygote

    GnRH and LHR gene variants predict adverse outcome in premenopausal breast cancer patients

    Get PDF
    Background: Breast cancer development and progression are dependent on estrogen activity. In premenopausal women, estrogen production is mainly regulated through the hypothalamic-pituitary-gonadal (HPG) axis. Methods: We have investigated the prognostic significance of two variants of genes involved in the HPG-axis, the GnRH (encoding gonadotropin-releasing hormone) 16Trp/Ser genotype and the LHR (encoding the luteinizing hormone receptor) insLQ variant, in retrospectively collected premenopausal breast cancer patients with a long follow-up (median follow-up of 11 years for living patients). Results: Carriership was not related with breast cancer risk (the case control study encompassed 278 premenopausal cases and 1,758 premenopausal controls). A significant adverse relationship of the LHR insLQ and GnRH 16Ser genotype with disease free survival (DFS) was observed in premenopausal (hormone receptor positive) breast cancer patients. In particular, those patients carrying both the GnRH 16Ser and LHR insLQ allele (approximately 25%) showed a significant increased risk of relapse, which was independent of traditional prognostic factors (hazard ratio 2.14; 95% confidence interval 1.32 to 3.45; P = 0.002). Conclusion: We conclude that the LHR insLQ and GnRH 16Ser alleles are independently associated with shorter DFS in premenopausal patients. When validated, these findings may provide a lead in the development of tailored treatment for breast cancer patients carrying both pol

    Sex Differences in the Brain: A Whole Body Perspective

    Get PDF
    Most writing on sexual differentiation of the mammalian brain (including our own) considers just two organs: the gonads and the brain. This perspective, which leaves out all other body parts, misleads us in several ways. First, there is accumulating evidence that all organs are sexually differentiated, and that sex differences in peripheral organs affect the brain. We demonstrate this by reviewing examples involving sex differences in muscles, adipose tissue, the liver, immune system, gut, kidneys, bladder, and placenta that affect the nervous system and behavior. The second consequence of ignoring other organs when considering neural sex differences is that we are likely to miss the fact that some brain sex differences develop to compensate for differences in the internal environment (i.e., because male and female brains operate in different bodies, sex differences are required to make output/function more similar in the two sexes). We also consider evidence that sex differences in sensory systems cause male and female brains to perceive different information about the world; the two sexes are also perceived by the world differently and therefore exposed to differences in experience via treatment by others. Although the topic of sex differences in the brain is often seen as much more emotionally charged than studies of sex differences in other organs, the dichotomy is largely false. By putting the brain firmly back in the body, sex differences in the brain are predictable and can be more completely understood

    Sex differences in the brain: a whole body perspective

    Get PDF
    corecore