22 research outputs found

    The hypersoft state of Cygnus X-3 A key to jet quenching in X-ray binaries?

    Get PDF
    Context. Cygnus X-3 is a unique microquasar in the Galaxy hosting a Wolf-Rayet companion orbiting a compact object that most likely is a low-mass black hole. The unique source properties are likely due to the interaction of the compact object with the heavy stellar wind of the companion.Aims. In this paper, we concentrate on a very specific period of time prior to the massive outbursts observed from the source. During this period, Cygnus X-3 is in a so-called hypersoft state, in which the radio and hard X-ray fluxes are found to be at their lowest values (or non-detected), the soft X-ray flux is at its highest values, and sporadic gamma-ray emission is observed. We use multiwavelength observations to study the nature of the hypersoft state.Methods. We observed Cygnus X-3 during the hypersoft state with Swift and NuSTAR in X-rays and SMA, AMI-LA, and RATAN-600 in the radio. We also considered X-ray monitoring data from MAXI and gamma-ray monitoring data from AGILE and Fermi.Results. We found that the spectra and timing properties of the multiwavelength observations can be explained by a scenario in which the jet production is turned off or highly diminished in the hypersoft state and the missing jet pressure allows the wind to refill the region close to the black hole. The results provide proof of actual jet quenching in soft states of X-ray binaries

    Discovery of extreme particle acceleration in the microquasar Cygnus X-3

    Full text link
    The study of relativistic particle acceleration is a major topic of high-energy astrophysics. It is well known that massive black holes in active galaxies can release a substantial fraction of their accretion power into energetic particles, producing gamma-rays and relativistic jets. Galactic microquasars (hosting a compact star of 1-10 solar masses which accretes matter from a binary companion) also produce relativistic jets. However, no direct evidence of particle acceleration above GeV energies has ever been obtained in microquasar ejections, leaving open the issue of the occurrence and timing of extreme matter energization during jet formation. Here we report the detection of transient gamma-ray emission above 100 MeV from the microquasar Cygnus X-3, an exceptional X-ray binary which sporadically produces powerful radio jets. Four gamma-ray flares (each lasting 1-2 days) were detected by the AGILE satellite simultaneously with special spectral states of Cygnus X-3 during the period mid-2007/mid-2009. Our observations show that very efficient particle acceleration and gamma-ray propagation out of the inner disk of a microquasar usually occur a few days before major relativistic jet ejections. Flaring particle energies can be thousands of times larger than previously detected maximum values (with Lorentz factors of 105 and 102 for electrons and protons, respectively). We show that the transitional nature of gamma-ray flares and particle acceleration above GeV energies in Cygnus X-3 is clearly linked to special radio/X-ray states preceding strong radio flares. Thus gamma-rays provide unique insight into the nature of physical processes in microquasars.Comment: 29 pages (including Supplementary Information), 8 figures, 2 tables version submitted to Nature on August 7, 2009 (accepted version available at http://www.nature.com/nature/journal/vaop/ncurrent/pdf/nature08578.pdf
    corecore