97 research outputs found

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    The Vaccination Model in Psychoneuroimmunology Research: A Review

    Get PDF
    This chapter explores the reasoning behind using the vaccination model to examine the influence of psychosocial factors on immunity. It then briefly discusses the mechanics of the vaccination response and the protocols used in psychoneuroimmunology vaccine research, before giving examples from the research literature of the studies examining relationships such as the association between stress and vaccination response. It also explores the ways the vaccination model can be used to answer key questions in psychoneuroimmunology, such as the following: “Does it matter when stressful life events occur relative to when the vaccine is received?” “What are the effects of prior exposure to the antigen?” “Do other psychosocial factors influence vaccine response besides stress?” Finally, it briefly considers the mechanisms underlying psychosocial factors and vaccination response associations and the future research needed to understand these better, and indeed to use current and future knowledge to improve and enhance vaccine responses in key at-risk populations

    Cytokine- and interferon-modulating properties of Echinacea spp. root tinctures stored at -20 degrees C for 2 years

    No full text
    Echinacea spp. phytomedicines are popular for treating upper respiratory infections. The purpose of this investigation was to examine the immunomodulatory properties of Echinacea tinctures from seven species after being stored at -20 degrees C for 2 years. Two experimental techniques were employed using human peripheral blood mononuclear cells (PBMC). In the first set of experiments, PBMCs were stimulated in vitro with tinctures alone and assayed for proliferation and production of interleukin-10 (IL-10), IL-12, and tumor necrosis factor-alpha (TNF-alpha). In the second set of experiments, subjects were immunized with influenza vaccine. PBMCs from vaccinated individuals were stimulated in vitro with Echinacea tinctures and influenza virus; cytokine production (IL-2, IL-10, and interferon-gamma [IFN-gamma]) was compared prevaccination and postvaccination. In the first experiments, (1) tinctures from E. angustifolia, E. pallida, E. paradoxa, and E. tennesseensis stimulated proliferation and tended to increase IL-10, (2) E. sanguinea and E. simulata stimulated only proliferation, (3) E. purpurea stimulated only IL-10, and (4) none of the extracts influenced IL-12 or TNF-alpha. In the second experiments, (1) tinctures from E. pallida, E. paradoxa, E. sanguinea, and E. simulata diminished influenza-specific IL-2, and (2) none of the extracts influenced influenza-specific IL-10 or IFN-gamma. For in vitro models using Echinacea, immune response may vary based on stimulus (Echinacea alone vs. Echinacea + recall stimulation with virus)
    corecore