12 research outputs found
Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease
Background: Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings: We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions: We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets. © 2013 Jain et al
Characterization of whole blood gene expression profiles as a sequel to globin mRNA reduction in patients with sickle cell disease
Global transcriptome analysis of whole blood RNA using microarrays has been proven to be challenging due to the high abundance of globin transcripts that constitute 70% of whole blood mRNA. This is a particular problem in patients with sickle cell disease, secondary to the high abundance of globin-expressing nucleated red blood cells and reticulocytes in the circulation. In order to accurately measure the steady state blood transcriptome in sickle cell patients we evaluated the efficacy of reducing globin transcripts in PAXgene stabilized RNA for genome-wide transcriptome analyses using microarrays. We demonstrate here by both microarrays and Q-PCR that the globin mRNA depletion method resulted in 55-65 fold reduction in globin transcripts in whole blood collected from healthy volunteers and sickle cell disease patients. This led to an improvement in microarray data quality by reducing data variability, with increased detection rate of expressed genes and improved overlap with the expression signatures of isolated peripheral blood mononuclear (PBMC) preparations. Analysis of differences between the whole blood transcriptome and PBMC transcriptome revealed important erythrocyte genes that participate in sickle cell pathogenesis and compensation. The combination of globin mRNA reduction after whole-blood RNA stabilization represents a robust clinical research methodology for the discovery of biomarkers for hematologic diseases
Gene Expression Patterns in Peripheral Blood Correlate with the Extent of Coronary Artery Disease
Systemic and local inflammation plays a prominent role in the pathogenesis of atherosclerotic coronary artery disease, but the relationship of whole blood gene expression changes with coronary disease remains unclear. We have investigated whether gene expression patterns in peripheral blood correlate with the severity of coronary disease and whether these patterns correlate with the extent of atherosclerosis in the vascular wall
