42 research outputs found

    The Interaction of Hypotaurine and Other Sulfinates with Reactive Oxygen and Nitrogen Species:A Survey of Reaction Mechanisms

    Get PDF
    Considerable strides have been made in understanding the oxidative mechanisms involved in the final steps of the cysteine pathway leading to taurine. The oxidation of sulfinates, hypotaurine and cysteine sulfinic acid, to the respective sulfonates, taurine and cysteic acid, has never been associated with any specific enzyme. Conversely, there is strong evidence that in vivo formation of taurine and cysteic acid is the result of sulfinate interaction with a variety of biologically relevant oxidants. In the last decade, many experiments have been performed to understand whether peroxynitrite, nitrogen dioxide and carbonate radical anion could be included in the biologically relevant reactive species capable of oxidizing sulfinates. Thanks to this work, it has been possible to highlight two possible reaction mechanisms (direct and indirect reaction) of sulfinates with reactive oxygen and nitrogen species.The sulfinates oxidation, mediated by peroxynitrite, is an example of both reaction mechanisms: through a two-electron-direct-reaction with peroxynitrite or through a one-electron-indirect-transfer reaction. In the indirect mechanism, the peroxynitrite homolysis releases hydroxyl and nitrogen dioxide radical and in addition the degradation of short-lived adduct formed by peroxynitrite and CO2 can generate carbonate radical anion. The reaction of hypotaurine and cysteine sulfinic acid with peroxynitrite-derived radicals is accompanied by extensive oxygen uptake with the generation of transient intermediates, which can begin a reaction by an oxygen-dependent mechanism with the sulfonates, taurine, and cysteic acid as final products. Due to pulse radiolysis studies, it has been shown that transient sulfonyl radicals (RSO2(•)) have been produced during the oxidation of both sulfinates by one-electron transfer reaction.The purpose is to analyze all the aspects of the reactive mechanism in the sulfinic group oxidation of hypotaurine and cysteine sulfinic acid through the results obtained from our laboratory in recent years

    A Genome-Wide Homozygosity Association Study Identifies Runs of Homozygosity Associated with Rheumatoid Arthritis in the Human Major Histocompatibility Complex

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disorder with a polygenic mode of inheritance. This study examined the hypothesis that runs of homozygosity (ROHs) play a recessive-acting role in the underlying RA genetic mechanism and identified RA-associated ROHs. Ours is the first genome-wide homozygosity association study for RA and characterized the ROH patterns associated with RA in the genomes of 2,000 RA patients and 3,000 normal controls of the Wellcome Trust Case Control Consortium. Genome scans consistently pinpointed two regions within the human major histocompatibility complex region containing RA-associated ROHs. The first region is from 32,451,664 bp to 32,846,093 bp (−log10(p)>22.6591). RA-susceptibility genes, such as HLA-DRB1, are contained in this region. The second region ranges from 32,933,485 bp to 33,585,118 bp (−log10(p)>8.3644) and contains other HLA-DPA1 and HLA-DPB1 genes. These two regions are physically close but are located in different blocks of linkage disequilibrium, and ∼40% of the RA patients' genomes carry these ROHs in the two regions. By analyzing homozygote intensities, an ROH that is anchored by the single nucleotide polymorphism rs2027852 and flanked by HLA-DRB6 and HLA-DRB1 was found associated with increased risk for RA. The presence of this risky ROH provides a 62% accuracy to predict RA disease status. An independent genomic dataset from 868 RA patients and 1,194 control subjects of the North American Rheumatoid Arthritis Consortium successfully validated the results obtained using the Wellcome Trust Case Control Consortium data. In conclusion, this genome-wide homozygosity association study provides an alternative to allelic association mapping for the identification of recessive variants responsible for RA. The identified RA-associated ROHs uncover recessive components and missing heritability associated with RA and other autoimmune diseases

    Prediction of diabetic retinopathy: role of oxidative stress and relevance of apoptotic biomarkers

    Full text link

    [G576S; E689K]: pathogenic combination or polymorphism in Pompe disease?

    No full text
    Contains fulltext : 69210.pdf (publisher's version ) (Closed access)We discuss four cases of acid alpha-glucosidase deficiency (EC, 3.2.1.3/20) without evident symptoms of Pompe disease (OMIM No 232300) in individuals of Asian descent. In three cases, the deficiency was associated with homozygosity for the sequence variant c.[1726G>A; 2065G>A] in the acid alpha-glucosidase gene (GAA) translating into p.[G576S; E689K]. One of these cases was a patient with profound muscular atrophy, another had cardio-myopathy and the third had no symptoms. The fourth case, the mother of a child with Pompe disease, was compound heterozygote for the GAA sequence variants c.[1726G>A; 2065G>A]/c.2338G>A (p.W746X) and had no symptoms either. Further investigations revealed that c.[1726A; 2065A] is a common GAA allele in the Japanese and Chinese populations. Our limited study predicts that approximately 4% of individuals in these populations are homozygote c.[1726A; 2065A]. The height of this figure in contrast to the rarity of Pompe disease in Asian populations and the clinical history of the cases described in this paper virtually exclude that homozygosity for c.[1726A; 2065A] causes Pompe disease. As c.[1726A; 2065A] homozygotes have been observed with similarly low acid alpha-glucosidase activity as some patients with Pompe disease, we caution they may present as false positives in newborn screening programs especially in Asian populations
    corecore