32 research outputs found
IL-22 mediates goblet cell hyperplasia and worm expulsion in intestinal helminth infection.
Type 2 immune responses are essential in protection against intestinal helminth infections. In this study we show that IL-22, a cytokine important in defence against bacterial infections in the intestinal tract, is also a critical mediator of anti-helminth immunity. After infection with Nippostrongylus brasiliensis, a rodent hookworm, IL-22-deficient mice showed impaired worm expulsion despite normal levels of type 2 cytokine production. The impaired worm expulsion correlated with reduced goblet cell hyperplasia and reduced expression of goblet cell markers. We further confirmed our findings in a second nematode model, the murine whipworm Trichuris muris. T.muris infected IL-22-deficient mice had a similar phenotype to that seen in N.brasiliensis infection, with impaired worm expulsion and reduced goblet cell hyperplasia. Ex vivo and in vitro analysis demonstrated that IL-22 is able to directly induce the expression of several goblet cell markers, including mucins. Taken together, our findings reveal that IL-22 plays an important role in goblet cell activation, and thus, a key role in anti-helminth immunity
On group strategy-proof mechanisms for a many-to-one matching model
For the many-to-one matching model in which firms have substitutable and quota q-separable preferences over subsets of workers we show that the workers-optimal stable mechanism is group strategy-proof for the workers. In order to prove this result, we also show that under this domain of preferences (which contains the domain of responsive preferences of the college admissions problem) the workers-optimal stable matching is weakly Pareto optimal for the workers and the Blocking Lemma holds as well. We exhibit an example showing that none of these three results remain true if the preferences of firms are substitutable but not quota q-separable.The work of R. Martínez, A. Neme, and J. Oviedo is partially supported by Research Grant 319502 from the Universidad Nacional
de San Luis (Argentina). The work of J. Massó is partially supported by Research Grants BEC2002-2130 from the Dirección General de Investigación Científica y Técnica (Spanish Ministry of Science and
Technology) and 2001SGR-00162 from the Departament d’Universitats, Recerca i Societat de la Informació (Generalitat de Catalunya)
Tumor Necrosis Factor-α and Muc2 Mucin Play Major Roles in Disease Onset and Progression in Dextran Sodium Sulphate-Induced Colitis
The sequential events and the inflammatory mediators that characterize disease onset and progression of ulcerative colitis (UC) are not well known. In this study, we evaluated the early pathologic events in the pathogenesis of colonic ulcers in rats treated with dextran sodium sulfate (DSS). Following a lag phase, day 5 of DSS treatment was found clinically most critical as disease activity index (DAI) exhibited an exponential rise with severe weight loss and rectal bleeding. Surprisingly, on days 1-2, colonic TNF-α expression (70-80-fold) and tissue protein (50-fold) were increased, whereas IL-1β only increased on days 7-9 (60-90-fold). Days 3-6 of DSS treatment were characterized by a prominent down regulation in the expression of regulatory cytokines (40-fold for IL-10 and TGFβ) and mucin genes (15-18 fold for Muc2 and Muc3) concomitant with depletion of goblet cell and adherent mucin. Remarkably, treatment with TNF-α neutralizing antibody markedly altered DSS injury with reduced DAI, restoration of the adherent and goblet cell mucin and IL-1β and mucin gene expression. We conclude that early onset colitis is dependent on TNF-α that preceded depletion of adherent and goblet cell mucin prior to epithelial cell damage and these biomarkers can be used as therapeutic targets for UC
Up-Regulation of MUC2 and IL-1β Expression in Human Colonic Epithelial Cells by Shigella and Its Interaction with Mucins
BACKGROUND: The entire gastrointestinal tract is protected by a mucous layer, which contains complex glycoproteins called mucins. MUC2 is one such mucin that protects the colonic mucosa from invading microbes. The initial interaction between microbes and mucins is an important step for microbial pathogenesis. Hence, it was of interest to investigate the relationship between host (mucin) and pathogen interaction, including Shigella induced expression of MUC2 and IL-1β during shigellosis. METHODS: The mucin-Shigella interaction was revealed by an in vitro mucin-binding assay. Invasion of Shigella dysenteriae into HT-29 cells was analyzed by Transmission electron microscopy. Shigella induced mucin and IL-1β expression were analyzed by RT-PCR and Immunofluorescence. RESULTS: The clinical isolates of Shigella were found to be virulent by a congo-red binding assay. The in vitro mucin-binding assay revealed both Shigella dysenteriae and Shigella flexneri have binding affinity in the increasing order of: guinea pig small intestinal mucin<guinea pig colonic mucin< Human colonic mucin. Invasion of Shigella dysenteriae into HT-29 cells occurs within 2 hours. Interestingly, in Shigella dysenteriae infected conditions, significant increases in mRNA expression of MUC2 and IL-1β were observed in a time dependent manner. Further, immunofluorescence analysis of MUC2 shows more positive cells in Shigella dysenteriae treated cells than untreated cells. CONCLUSIONS: Our study concludes that the Shigella species specifically binds to guinea pig colonic mucin, but not to guinea pig small intestinal mucin. The guinea pig colonic mucin showed a greater binding parameter (R), and more saturable binding, suggesting the presence of a finite number of receptor binding sites in the colonic mucin of the host. In addition, modification of mucins with TFMS and sodium metaperiodate significantly reduced mucin-bacterial binding; suggesting that the mucin-Shigella interaction occurs through carbohydrate epitopes on the mucin backbones. Overproduction of MUC2 may alter adherence and invasion of Shigella dysenteriae into human colonic epithelial cells
Mucin Dynamics in Intestinal Bacterial Infection
Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract.Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17) in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05). Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon.Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection
Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic Mucosa
Despite recent advances in our understanding of the pathogenesis of attaching and effacing (A/E) Escherichia coli infections, the mechanisms by which the host defends against these microbes are unclear. The goal of this study was to determine the role of goblet cell-derived Muc2, the major intestinal secretory mucin and primary component of the mucus layer, in host protection against A/E pathogens. To assess the role of Muc2 during A/E bacterial infections, we inoculated Muc2 deficient (Muc2−/−) mice with Citrobacter rodentium, a murine A/E pathogen related to diarrheagenic A/E E. coli. Unlike wildtype (WT) mice, infected Muc2−/− mice exhibited rapid weight loss and suffered up to 90% mortality. Stool plating demonstrated 10–100 fold greater C. rodentium burdens in Muc2−/− vs. WT mice, most of which were found to be loosely adherent to the colonic mucosa. Histology of Muc2−/− mice revealed ulceration in the colon amid focal bacterial microcolonies. Metabolic labeling of secreted mucins in the large intestine demonstrated that mucin secretion was markedly increased in WT mice during infection compared to uninfected controls, suggesting that the host uses increased mucin release to flush pathogens from the mucosal surface. Muc2 also impacted host-commensal interactions during infection, as FISH analysis revealed C. rodentium microcolonies contained numerous commensal microbes, which was not observed in WT mice. Orally administered FITC-Dextran and FISH staining showed significantly worsened intestinal barrier disruption in Muc2−/− vs. WT mice, with overt pathogen and commensal translocation into the Muc2−/− colonic mucosa. Interestingly, commensal depletion enhanced C. rodentium colonization of Muc2−/− mice, although colonic pathology was not significantly altered. In conclusion, Muc2 production is critical for host protection during A/E bacterial infections, by limiting overall pathogen and commensal numbers associated with the colonic mucosal surface. Such actions limit tissue damage and translocation of pathogenic and commensal bacteria across the epithelium
Pathophysiological Investigation of the Gastric Surface Mucous Gel Layer of Patients with Helicobacter pylori Infection by Using Immunoassays for Trefoil Factor Family 2 and Gastric Gland Mucous Cell-Type Mucin in Gastric Juice
Background The trefoil factor family (TFF) 2 protein is produced by gastric gland mucous cells (GMCs), and the secreted TFF2 shares a mucosal barrier function with GMC-type mucin. Recently, we presented an enzyme-linked immunosorbent assay (ELISA) method for measurement of GMC-type mucin in the gastric juice. Aims We aimed to develop an ELISA for TFF2 and to assess pathophysiological changes in the gastric surface mucous gel layer (SMGL) of patients with Helicobacter pylori infection. Methods The distribution of TFF2 and GMC-type mucin in the SMGL was immunohistochemically determined. The ELISA for TFF2 was based on a polyclonal goat antibody. Recombinant TFF2 was employed to prepare the calibrators. TFF2 and GMC-type mucin in the gastric juice in healthy individuals (n = 33) and patients with gastritis (n = 37), gastric ulcer (n = 16), and duodenal ulcer (n = 10) were assayed using ELISA. Results TFF2 and GMC-type mucin were immunohistochemically co-localized in the gastric SMGL and GMCs. The TFF2 levels in the patients were significantly higher than those in the healthy individuals. Further, the TFF2 levels in the H. pylori-positive patients were significantly higher than those in the H. pylori-negative patients, and decreased after the eradication of the infection. GMC-type mucin levels showed a tendency similar to that of TFF2 levels. Conclusions The upregulation of TFF2 and GMC-type mucin secretion may reflect the response of the gastric mucosa to H. pylori-induced injuries. TFF2 and GMC-type mucin secreted into the SMGL may protect the gastric mucosa against H. pylori.ArticleDIGESTIVE DISEASES AND SCIENCES. 56(12):3498-3506 (2011)journal articl
