63 research outputs found

    Epidermal Neural Crest Stem Cell (EPI-NCSC)—Mediated Recovery of Sensory Function in a Mouse Model of Spinal Cord Injury

    Get PDF
    Here we show that epidermal neural crest stem cell (EPI-NCSC) transplants in the contused spinal cord caused a 24% improvement in sensory connectivity and a substantial recovery of touch perception. Furthermore we present a novel method for the ex vivo expansion of EPI-NCSC into millions of stem cells that takes advantage of the migratory ability of neural crest stem cells and is based on a new culture medium and the use of microcarriers. Functional improvement was shown by two independent methods, spinal somatosensory evoked potentials (SpSEP) and the Semmes-Weinstein touch test. Subsets of transplanted cells differentiated into myelinating oligodendrocytes. Unilateral injections of EPI-NCSC into the lesion of midline contused mouse spinal cords elicited bilateral improvements. Intraspinal EPI-NCSC did not migrate laterally in the spinal cord or invade the spinal roots and dorsal root ganglia, thus implicating diffusible factors. EPI-NCSC expressed neurotrophic factors, angiogenic factors, and metalloproteases. The strength of EPI-NCSC thus is that they can exert a combination of pertinent functions in the contused spinal cord, including cell replacement, neuroprotection, angiogenesis and modulation of scar formation. EPI-NCSC are uniquely qualified for cell-based therapy in spinal cord injury, as neural crest cells and neural tube stem cells share a higher order stem cell and are thus ontologically closely related

    Exploring the Zoonotic Potential of Mycobacterium avium Subspecies paratuberculosis through Comparative Genomics

    Get PDF
    A comparative genomics approach was utilised to compare the genomes of Mycobacterium avium subspecies paratuberculosis (MAP) isolated from early onset paediatric Crohn's disease (CD) patients as well as Johne's diseased animals. Draft genome sequences were produced for MAP isolates derived from four CD patients, one ulcerative colitis (UC) patient, and two non-inflammatory bowel disease (IBD) control individuals using Illumina sequencing, complemented by comparative genome hybridisation (CGH). MAP isolates derived from two bovine and one ovine host were also subjected to whole genome sequencing and CGH. All seven human derived MAP isolates were highly genetically similar and clustered together with one bovine type isolate following phylogenetic analysis. Three other sequenced isolates (including the reference bovine derived isolate K10) were genetically distinct. The human isolates contained two large tandem duplications, the organisations of which were confirmed by PCR. Designated vGI-17 and vGI-18 these duplications spanned 63 and 109 open reading frames, respectively. PCR screening of over 30 additional MAP isolates (3 human derived, 27 animal derived and one environmental isolate) confirmed that vGI-17 and vGI-18 are common across many isolates. Quantitative real-time PCR of vGI-17 demonstrated that the proportion of cells containing the vGI-17 duplication varied between 0.01 to 15% amongst isolates with human isolates containing a higher proportion of vGI-17 compared to most animal isolates. These findings suggest these duplications are transient genomic rearrangements. We hypothesise that the over-representation of vGI-17 in human derived MAP strains may enhance their ability to infect or persist within a human host by increasing genome redundancy and conferring crude regulation of protein expression across biologically important regions
    corecore