45 research outputs found
The Therapeutic effect of Memantine through the Stimulation of Synapse Formation and Dendritic Spine Maturation in Autism and Fragile X Syndrome
Although the pathogenic mechanisms that underlie autism are not well understood, there is evidence showing that metabotropic and ionotropic glutamate receptors are hyper-stimulated and the GABAergic system is hypo-stimulated in autism. Memantine is an uncompetitive antagonist of NMDA receptors and is widely prescribed for treatment of Alzheimer's disease treatment. Recently, it has been shown to improve language function, social behavior, and self-stimulatory behaviors of some autistic subjects. However the mechanism by which memantine exerts its effect remains to be elucidated. In this study, we used cultured cerebellar granule cells (CGCs) from Fmr1 knockout (KO) mice, a mouse model for fragile X syndrome (FXS) and syndromic autism, to examine the effects of memantine on dendritic spine development and synapse formation. Our results show that the maturation of dendritic spines is delayed in Fmr1-KO CGCs. We also detected reduced excitatory synapse formation in Fmr1-KO CGCs. Memantine treatment of Fmr1-KO CGCs promoted cell adhesion properties. Memantine also stimulated the development of mushroom-shaped mature dendritic spines and restored dendritic spine to normal levels in Fmr1-KO CGCs. Furthermore, we demonstrated that memantine treatment promoted synapse formation and restored the excitatory synapses to a normal range in Fmr1-KO CGCs. These findings suggest that memantine may exert its therapeutic capacity through a stimulatory effect on dendritic spine maturation and excitatory synapse formation, as well as promoting adhesion of CGCs
New therapeutic targets in Alzheimer's disease: brain deregulation of calcium and zinc
The molecular determinants of Alzheimer's (AD) disease are still not completely known; however, in the past two decades, a large body of evidence has indicated that an important contributing factor for the disease is the development of an unbalanced homeostasis of two signaling cations: calcium (Ca2+) and zinc (Zn2+). Both ions serve a critical role in the physiological functioning of the central nervous system, but their brain deregulation promotes amyloid-β dysmetabolism as well as tau phosphorylation. AD is also characterized by an altered glutamatergic activation, and glutamate can promote both Ca2+ and Zn2+ dyshomeostasis. The two cations can operate synergistically to promote the generation of free radicals that further intracellular Ca2+ and Zn2+ rises and set the stage for a self-perpetuating harmful loop. These phenomena can be the initial steps in the pathogenic cascade leading to AD, therefore, therapeutic interventions aiming at preventing Ca2+ and Zn2+ dyshomeostasis may offer a great opportunity for disease-modifying strategies
Clinical consequences of a bovine virus diarrhoea virus infection in a dairy herd: A longitudinal study
Tau protein concentrations in cerebrospinal fluid of patients with amyotrophic lateral sclerosis
Cranial ontogenetic variation in Mapusaurus roseae (Dinosauria: Theropoda) and the probable role of heterochrony in carcharodontosaurid evolution
Gastrointestinal helminths of Emperor Penguin (Aptenodytes forsteri) from Antarctica
Although research on parasitic diseases in Antarctic birds is scarce and the information largely fragmented, an increasing number of studies are currently in progress in this area. The host/parasite relationship is very important for understanding the impact of parasitism on the seabirds’ feeding ecology, especially in those isolated regions where the host is extremely sensitive to new diseases. Penguins are a big favorite for these studies because of their importance as indicators of change in the Antarctic ecosystem. This study aims at adding information on gastrointestinal parasites of the Emperor Penguin Aptenodytes forsteri from Snow Hill colony. Based on a sample of 43 individuals found freshly dead (3 adults and 40 chicks) from predation or starvation, the gastrointestinal helminth community in Emperor penguins was composed of two species of cestodes (Parorchites zederi and Tetrabothrius sp.) and three species of nematodes (Stegophorus macronectes, Tetrameres sp. and Contracaecum osculatum). This is the first record of S. macronectes in the Emperor Penguin. The low parasite richness observed might be related to the stenophagic and pelagic diet of this host.Fil: Fusaro, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; Argentina. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; ArgentinaFil: Libertelli, Marcela. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; ArgentinaFil: Ansaldo, Martin. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Coria, Néstor Rubén. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Diaz, Julia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; Argentin
