53 research outputs found

    Mitochondrial and Plasma Membrane Pools of Stomatin-Like Protein 2 Coalesce at the Immunological Synapse during T Cell Activation

    Get PDF
    Stomatin-like protein 2 (SLP-2) is a member of the stomatin – prohibitin – flotillin – HflC/K (SPFH) superfamily. Recent evidence indicates that SLP-2 is involved in the organization of cardiolipin-enriched microdomains in mitochondrial membranes and the regulation of mitochondrial biogenesis and function. In T cells, this role translates into enhanced T cell activation. Although the major pool of SLP-2 is associated with mitochondria, we show here that there is an additional pool of SLP-2 associated with the plasma membrane of T cells. Both plasma membrane-associated and mitochondria-associated pools of SLP-2 coalesce at the immunological synapse (IS) upon T cell activation. SLP-2 is not required for formation of IS nor for the re-localization of mitochondria to the IS because SLP-2-deficient T cells showed normal re-localization of these organelles in response to T cell activation. Interestingly, upon T cell activation, we found the surface pool of SLP-2 mostly excluded from the central supramolecular activation complex, and enriched in the peripheral area of the IS where signalling TCR microclusters are located. Based on these results, we propose that SLP-2 facilitates the compartmentalization not only of mitochondrial membranes but also of the plasma membrane into functional microdomains. In this latter location, SLP-2 may facilitate the optimal assembly of TCR signalosome components. Our data also suggest that there may be a net exchange of membrane material between mitochondria and plasma membrane, explaining the presence of some mitochondrial proteins in the plasma membrane

    Pattern recognition receptors as potential therapeutic targets in inflammatory rheumatic disease

    Get PDF
    The pattern recognition receptors of the innate immune system are part of the first line of defence against pathogens. However, they also have the ability to respond to danger signals that are frequently elevated during tissue damage and at sites of inflammation. Inadvertent activation of pattern recognition receptors has been proposed to contribute to the pathogenesis of many conditions including inflammatory rheumatic diseases. Prolonged inflammation most often results in pain and damage to tissues. In particular, the Toll-like receptors and nucleotide-binding oligomerisation domain-like receptors that form inflammasomes have been postulated as key contributors to the inflammation observed in rheumatoid arthritis, osteoarthritis, gout and systemic lupus erythematosus. As such, there is increasing interest in targeting these receptors for therapeutic treatment in the clinic. Here the role of pattern recognition receptors in the pathogenesis of these diseases is discussed, with an update on the development of interventions to modulate the activity of these potential therapeutic targets

    The Staphylococcus aureus superantigen SElX is a bifunctional toxin that inhibits neutrophil function:SElX Inhibits Neutrophil Function

    Get PDF
    Bacterial superantigens (SAgs) cause Vβ-dependent T-cell proliferation leading to immune dysregulation associated with the pathogenesis of life-threatening infections such as toxic shock syndrome, and necrotizing pneumonia. Previously, we demonstrated that staphylococcal enterotoxin-like toxin X (SElX) from Staphylococcus aureus is a classical superantigen that exhibits T-cell activation in a Vβ-specific manner, and contributes to the pathogenesis of necrotizing pneumonia. Here, we discovered that SElX can also bind to neutrophils from human and other mammalian species and disrupt IgG-mediated phagocytosis. Site-directed mutagenesis of the conserved sialic acid-binding motif of SElX abolished neutrophil binding and phagocytic killing, and revealed multiple glycosylated neutrophil receptors for SElX binding. Furthermore, the neutrophil binding-deficient mutant of SElX retained its capacity for T-cell activation demonstrating that SElX exhibits mechanistically independent activities on distinct cell populations associated with acquired and innate immunity, respectively. Finally, we demonstrated that the neutrophil-binding activity rather than superantigenicity is responsible for the SElX-dependent virulence observed in a necrotizing pneumonia rabbit model of infection. Taken together, we report the first example of a SAg, that can manipulate both the innate and adaptive arms of the human immune system during S. aureus pathogenesis

    Uncoupling of Pro- and Anti-Inflammatory Properties of Staphylococcus aureus

    No full text

    CTLA-4 interacts with STAT5 and inhibits STAT5-mediated transcription

    No full text
    Cytotoxic T-lymphocyte antigen-4 (CTLA-4; CD152) is a member of the immunoglobulin gene superfamily with strong homology to the receptor CD28 with which it shares the ligands CD80 and CD86. Unlike CD28, a potent costimulator of T-cell responses, CTLA-4 is transiently expressed on the cell surface of activated T cells and appears to operate predominantly as a negative regulator of T-cell proliferation. Signal transduction mechanisms utilized by CTLA-4 remain unclear although several mechanisms have been implicated. In this study, we show that the cytoplasmic domain of CTLA-4, but not of CD28, binds to STAT5 in yeast two-hybrid assay and in coimmunoprecipitation assays. Mutations of Tyr165 and Tyr182 in CTLA-4 did not abrogate the interaction of STAT5 with CTLA-4. Finally, the overexpression of CTLA-4 in Jurkat T cells inhibits STAT-mediated activation of STAT5 responsive elements. These results suggest that CTLA-4 and STAT5 interact in T cells and that this interaction is important for CTLA-4 signalling

    CTLA4 gene polymorphism and autoimmunity.

    No full text
    CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA4) are two receptors that have critical but opposing functions in T-cell stimulation. CD28 promotes a number of T-cell activities, whereas in contrast CTLA4 is an essential inhibitor of T-cell responses. Because of its inhibitory role, CTLA4 is a strong candidate susceptibility gene in autoimmunity and several studies suggest disease-associated polymorphisms. In this review, we discuss recent progress in relating CTLA4 polymorphisms to disease susceptibility and consider the putative mechanisms by which CTLA4 may act to inhibit autoimmunity
    • …
    corecore