42 research outputs found

    Evaluation of guided imagery as treatment for recurrent abdominal pain in children: a randomized controlled trial

    Get PDF
    BACKGROUND: Because of the paucity of effective evidence-based therapies for children with recurrent abdominal pain, we evaluated the therapeutic effect of guided imagery, a well-studied self-regulation technique. METHODS: 22 children, aged 5 – 18 years, were randomized to learn either breathing exercises alone or guided imagery with progressive muscle relaxation. Both groups had 4-weekly sessions with a therapist. Children reported the numbers of days with pain, the pain intensity, and missed activities due to abdominal pain using a daily pain diary collected at baseline and during the intervention. Monthly phone calls to the children reported the number of days with pain and the number of days of missed activities experienced during the month of and month following the intervention. Children with ≤ 4 days of pain/month and no missed activities due to pain were defined as being healed. Depression, anxiety, and somatization were measured in both children and parents at baseline. RESULTS: At baseline the children who received guided imagery had more days of pain during the preceding month (23 vs. 14 days, P = 0.04). There were no differences in the intensity of painful episodes or any baseline psychological factors between the two groups. Children who learned guided imagery with progressive muscle relaxation had significantly greater decrease in the number of days with pain than those learning breathing exercises alone after one (67% vs. 21%, P = 0.05), and two (82% vs. 45%, P < 0.01) months and significantly greater decrease in days with missed activities at one (85% vs. 15%, P = 0.02) and two (95% vs. 77%. P = 0.05) months. During the two months of follow-up, more children who had learned guided imagery met the threshold of ≤ 4 day of pain each month and no missed activities (RR = 7.3, 95%CI [1.1,48.6]) than children who learned only the breathing exercises. CONCLUSION: The therapeutic efficacy of guided imagery with progressive muscle relaxation found in this study is consistent with our present understanding of the pathophysiology of recurrent abdominal pain in children. Although unfamiliar to many pediatricians, guided imagery is a simple, noninvasive therapy with potential benefit for treating children with RAP

    Bioenergetic status modulates motor neuron vulnerability and pathogenesis in a zebrafish model of spinal muscular atrophy

    Get PDF
    Degeneration and loss of lower motor neurons is the major pathological hallmark of spinal muscular atrophy (SMA), resulting from low levels of ubiquitously-expressed survival motor neuron (SMN) protein. One remarkable, yet unresolved, feature of SMA is that not all motor neurons are equally affected, with some populations displaying a robust resistance to the disease. Here, we demonstrate that selective vulnerability of distinct motor neuron pools arises from fundamental modifications to their basal molecular profiles. Comparative gene expression profiling of motor neurons innervating the extensor digitorum longus (disease-resistant), gastrocnemius (intermediate vulnerability), and tibialis anterior (vulnerable) muscles in mice revealed that disease susceptibility correlates strongly with a modified bioenergetic profile. Targeting of identified bioenergetic pathways by enhancing mitochondrial biogenesis rescued motor axon defects in SMA zebrafish. Moreover, targeting of a single bioenergetic protein, phosphoglycerate kinase 1 (Pgk1), was found to modulate motor neuron vulnerability in vivo. Knockdown of pgk1 alone was sufficient to partially mimic the SMA phenotype in wild-type zebrafish. Conversely, Pgk1 overexpression, or treatment with terazosin (an FDA-approved small molecule that binds and activates Pgk1), rescued motor axon phenotypes in SMA zebrafish. We conclude that global bioenergetics pathways can be therapeutically manipulated to ameliorate SMA motor neuron phenotypes in vivo

    Integrated 18F-FDG PET/MRI in breast cancer: early prediction of response to neoadjuvant chemotherapy

    No full text
    Purpose To explore whether integrated F-18-FDG PET/MRI can be used to predict pathological response to neoadjuvant chemotherapy (NAC) in patients with breast cancer. Methods Between November 2014 and April 2016, 26 patients with breast cancer who had received NAC and subsequent surgery were prospectively enrolled. Each patient underwent F-18-FDG PET/MRI examination before and after the first cycle of NAC. Qualitative MRI parameters, including morphological descriptors and the presence of peritumoral oedema were assessed. Quantitatively, PET parameters, including maximum standardized uptake value, metabolic tumour volume and total lesion glycolysis (TLG), and MRI parameters, including washout proportion and signal enhancement ratio (SER), were measured. The performance of the imaging parameters singly and in combination in predicting a pathological incomplete response (non-pCR) was assessed. Results Of the 26 patients, 7 (26.9%) exhibited a pathological complete response (pCR), and 19 (73.1%) exhibited a non-pCR. No significant differences were found between the pCR and non-pCR groups in the qualitative MRI parameters. The mean percentage reductions in TLG(30%) on PET and SER on MRI were significantly greater in the pCR group than in the non-pCR group (TLG30% -64.8 +/- 15.5% vs. -25.4 +/- 48.7%, P = 0.005; SER -34.6 +/- 19.7% vs. -8.7 +/- 29.0%, P = 0.040). The area under the receiver operating characteristic curve for the percentage change in TLG30% (0.789, 95% CI 0.614 to 0.965) was similar to that for the percentage change in SER (0.789, 95% CI 0.552 to 1.000; P = 1.000). The specificity of TLG30% in predicting pCR) was 100% (7/7) and that of SER was 71.4% (5/7). The sensitivity of TLG30% in predicting non-pCR was 63.2% (12/19) and that of SER was 84.2% (16/19). When the combined TLG30% and SER criterion was applied, sensitivity was 100% (19/19), and specificity was 71.4% (5/7). Conclusion F-18-FDG PET/MRI can be used to predict non-pCR after the first cycle of NAC in patients with breast cancer and has the potential to improve sensitivity by the addition of MRI parameters to the PET parameters.N
    corecore