175 research outputs found
Central Powering of the Largest Lyman-alpha Nebula is Revealed by Polarized Radiation
High-redshift Lyman-alpha blobs are extended, luminous, but rare structures
that appear to be associated with the highest peaks in the matter density of
the Universe. Their energy output and morphology are similar to powerful radio
galaxies, but the source of the luminosity is unclear. Some blobs are
associated with ultraviolet or infrared bright galaxies, suggesting an extreme
starburst event or accretion onto a central black hole. Another possibility is
gas that is shock excited by supernovae. However some blobs are not associated
with galaxies, and may instead be heated by gas falling into a dark matter
halo. The polarization of the Ly-alpha emission can in principle distinguish
between these options, but a previous attempt to detect this signature returned
a null detection. Here we report on the detection of polarized Ly-alpha from
the blob LAB1. Although the central region shows no measurable polarization,
the polarized fraction (P) increases to ~20 per cent at a radius of 45 kpc,
forming an almost complete polarized ring. The detection of polarized radiation
is inconsistent with the in situ production of Ly-alpha photons, and we
conclude that they must have been produced in the galaxies hosted within the
nebula, and re-scattered by neutral hydrogen.Comment: Published in the August 18 issue of Nature. 1750 words, 3 figures,
and full Supplementary Information. Version has not undergone proofing.
Reduced and processed data products are available here:
http://obswww.unige.ch/people/matthew.hayes/LymanAlpha/LabPol
Recommended from our members
Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model
We present results from a semicoherent search for continuous gravitational
waves from the low-mass X-ray binary Scorpius X-1, using a hidden Markov model
(HMM) to track spin wandering. This search improves on previous HMM-based
searches of LIGO data by using an improved frequency domain matched filter, the
-statistic, and by analysing data from Advanced LIGO's second
observing run. In the frequency range searched, from to
, we find no evidence of gravitational radiation. At
, the most sensitive search frequency, we report an upper
limit on gravitational wave strain (at 95\% confidence) of when marginalising over source inclination angle. This is the
most sensitive search for Scorpius X-1, to date, that is specifically designed
to be robust in the presence of spin wandering
A synthesis of bacterial and archaeal phenotypic trait data.
A synthesis of phenotypic and quantitative genomic traits is provided for bacteria and archaea, in the form of a scripted, reproducible workflow that standardizes and merges 26 sources. The resulting unified dataset covers 14 phenotypic traits, 5 quantitative genomic traits, and 4 environmental characteristics for approximately 170,000 strain-level and 15,000 species-aggregated records. It spans all habitats including soils, marine and fresh waters and sediments, host-associated and thermal. Trait data can find use in clarifying major dimensions of ecological strategy variation across species. They can also be used in conjunction with species and abundance sampling to characterize trait mixtures in communities and responses of traits along environmental gradients
Recommended from our members
All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run
We present the results of a search for short-duration gravitational-wave transients in the data from the second observing run of Advanced LIGO and Advanced Virgo. We search for gravitational-wave transients with a duration of milliseconds to approximately one second in the 32-4096 Hz frequency band with minimal assumptions about the signal properties, thus targeting a wide variety of sources. We also perform a matched-filter search for gravitational-wave transients from cosmic string cusps for which the waveform is well modeled. The unmodeled search detected gravitational waves from several binary black hole mergers which have been identified by previous analyses. No other significant events have been found by either the unmodeled search or the cosmic string search. We thus present the search sensitivities for a variety of signal waveforms and report upper limits on the source rate density as a function of the characteristic frequency of the signal. These upper limits are a factor of 3 lower than the first observing run, with a 50% detection probability for gravitational-wave emissions with energies of âŒ10-9 Mc2 at 153 Hz. For the search dedicated to cosmic string cusps we consider several loop distribution models, and present updated constraints from the same search done in the first observing run
Recommended from our members
Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network
Gravitational-wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar-mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational-wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event is detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses M=m1+m2Ï”[120,800] M and mass ratios q=m2/m1Ï”[0.1,1.0]. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of 0.20 Gpc-3 yr-1 (in comoving units at the 90% confidence level) for equal-mass binaries with individual masses m1,2=100 M and dimensionless spins Ï1,2=0.8 aligned with the orbital angular momentum of the binary. This improves by a factor of âŒ5 that reported after Advanced LIGO's first observing run
Recommended from our members
Search for Eccentric Binary Black Hole Mergers with Advanced LIGO and Advanced Virgo during Their First and Second Observing Runs
When formed through dynamical interactions, stellar-mass binary black holes (BBHs) may retain eccentric orbits (e > 0.1 at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically formed binaries from isolated BBH mergers. Current template-based gravitational-wave searches do not use waveform models associated with eccentric orbits, rendering the search less efficient for eccentric binary systems. Here we present the results of a search for BBH mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. We carried out the search with the coherent WaveBurst algorithm, which uses minimal assumptions on the signal morphology and does not rely on binary waveform templates. We show that it is sensitive to binary mergers with a detection range that is weakly dependent on eccentricity for all bound systems. Our search did not identify any new binary merger candidates. We interpret these results in light of eccentric binary formation models. We rule out formation channels with rates âȘ100 Gpc-3 yr-1 for e > 0.1, assuming a black hole mass spectrum with a power-law index âČ2
Multiple Aggregates and Aggresomes of C-Terminal Truncated Human αA-Crystallins in Mammalian Cells and Protection by αB-Crystallin
Cleavage of 11 (αA162), 5 (αA168) and 1 (αA172) residues from the C-terminus of αA-crystallin creates structurally and functionally different proteins. The formation of these post-translationally modified αA-crystallins is enhanced in diabetes. In the present study, the fate of the truncated αA-crystallins expressed in living mammalian cells in the presence and absence of native αA- or αB-crystallin has been studied by laser scanning confocal microscopy (LSM).YFP tagged αAwt, αA162, αA168 and αA172, were individually transfected or co-transfected with CFP tagged αAwt or αBwt, expressed in HeLa cells and studied by LSM. Difference in protein aggregation was not caused by different level of α-crystallin expression because Western blotting results showed nearly same level of expression of the various α-crystallins. The FRET-acceptor photo-bleaching protocol was followed to study in situ protein-protein interaction. αA172 interacted with αAwt and αBwt better than αA168 and αA162, interaction of αBwt being two-fold stronger than that of αAwt. Furthermore, aggresomes were detected in cells individually expressing αA162 and αA168 constructs and co-expression with αBwt significantly sequestered the aggresomes. There was no sequestration of aggresomes with αAwt co-expression with the truncated constructs, αA162 and αA168. Double immunocytochemistry technique was used for co-localization of γ-tubulin with αA-crystallin to demonstrate the perinuclear aggregates were aggresomes.αA172 showed the strongest interaction with both αAwt and αBwt. Native αB-crystallin provided protection to partially unfolded truncated αA-crystallins whereas native αA-crystallin did not. Aggresomes were detected in cells expressing αA162 and αA168 and αBwt co-expression with these constructs diminished the aggresome formation. Co-localization of γ-tubulin in perinuclear aggregates validates for aggresomes
A synthesis of bacterial and archaeal phenotypic trait data
A synthesis of phenotypic and quantitative genomic traits is provided for bacteria and archaea, in the form of a scripted, reproducible workflow that standardizes and merges 26 sources. The resulting unified dataset covers 14 phenotypic traits, 5 quantitative genomic traits, and 4 environmental characteristics for approximately 170,000 strain-level and 15,000 species-aggregated records. It spans all habitats including soils, marine and fresh waters and sediments, host-associated and thermal. Trait data can find use in clarifying major dimensions of ecological strategy variation across species. They can also be used in conjunction with species and abundance sampling to characterize trait mixtures in communities and responses of traits along environmental gradients
- âŠ