57 research outputs found
Tracing oncogene-driven remodelling of the intestinal stem cell niche
Interactions between tumour cells and the surrounding microenvironment contribute to tumour progression, metastasis and recurrence1–3. Although mosaic analyses in Drosophila have advanced our understanding of such interactions4,5, it has been difficult to engineer parallel approaches in vertebrates. Here we present an oncogene-associated, multicolour reporter mouse model—the Red2Onco system—that allows differential tracing of mutant and wild-type cells in the same tissue. By applying this system to the small intestine, we show that oncogene-expressing mutant crypts alter the cellular organization of neighbouring wild-type crypts, thereby driving accelerated clonal drift. Crypts that express oncogenic KRAS or PI3K secrete BMP ligands that suppress local stem cell activity, while changes in PDGFRloCD81+ stromal cells induced by crypts with oncogenic PI3K alter the WNT signalling environment. Together, these results show how oncogene-driven paracrine remodelling creates a niche environment that is detrimental to the maintenance of wild-type tissue, promoting field transformation dominated by oncogenic clones
Symbiodinium Transcriptomes: Genome Insights into the Dinoflagellate Symbionts of Reef-Building Corals
Dinoflagellates are unicellular algae that are ubiquitously abundant in aquatic environments. Species of the genus Symbiodinium form symbiotic relationships with reef-building corals and other marine invertebrates. Despite their ecologic importance, little is known about the genetics of dinoflagellates in general and Symbiodinium in particular. Here, we used 454 sequencing to generate transcriptome data from two Symbiodinium species from different clades (clade A and clade B). With more than 56,000 assembled sequences per species, these data represent the largest transcriptomic resource for dinoflagellates to date. Our results corroborate previous observations that dinoflagellates possess the complete nucleosome machinery. We found a complete set of core histones as well as several H3 variants and H2A.Z in one species. Furthermore, transcriptome analysis points toward a low number of transcription factors in Symbiodinium spp. that also differ in the distribution of DNA-binding domains relative to other eukaryotes. In particular the cold shock domain was predominant among transcription factors. Additionally, we found a high number of antioxidative genes in comparison to non-symbiotic but evolutionary related organisms. These findings might be of relevance in the context of the role that Symbiodinium spp. play as coral symbionts
Efficient sensitization of nanocrystalline TiO2 films by a near-IR-absorbing unsymmetrical zinc phthalocyanine.
(Chemical Equation Presented) Pushing and pulling by three tert-butyl and two carboxylic acid groups, respectively, results in a sensitizer (see picture) that exhibits an incident photon-to-current conversion efficiency of 75 %. A cell sensitized with this compound gives a short-circuit photocurrent density of (6.50 ± 0.20) mA cm-2, an open-circuit voltage of (635 ± 30) mV, and a fill factor of 0.74 ± 0.03, which corresponds to an overall conversion efficiency of 3.05 %. © 2007 Wiley-VCH Verlag GmbH and Co. KGaA
Sex hormones establish a reserve pool of adult muscle stem cells
Quiescent satellite cells, known as adult muscle stem cells, possess a remarkable ability to regenerate skeletal muscle following injury throughout life. Although they mainly originate from multipotent stem/progenitor cells of the somite, the mechanism underlying the establishment of quiescent satellite cell populations is unknown. Here, we show that sex hormones induce Mind bomb 1 (Mib1) expression in myofibres at puberty, which activates Notch signalling in cycling juvenile satellite cells and causes them to be converted into adult quiescent satellite cells. Myofibres lacking Mib1 fail to send Notch signals to juvenile satellite cells, leading to impaired cell cycle exit and depletion. Our findings reveal that the hypothalamic-pituitary-gonadal axis drives Mibi expression in the myofibre niche. Moreover, the same axis regulates the re-establishment of quiescent satellite cell populations following injury. Our data show that sex hormones establish adult quiescent satellite cell populations by regulating the myofibre niche at puberty and re-establish them during regeneration
© 2016 Macmillan Publishers Limited, part of springer Nature All rights reserved.111
- …