110 research outputs found

    The vertebrate phylotypic stage and an early bilaterian-related stage in mouse embryogenesis defined by genomic information

    Get PDF
    BACKGROUND: Embryos of taxonomically different vertebrates are thought to pass through a stage in which they resemble one another morphologically. This "vertebrate phylotypic stage" may represent the basic vertebrate body plan that was established in the common ancestor of vertebrates. However, much controversy remains about when the phylotypic stage appears, and whether it even exists. To overcome the limitations of studies based on morphological comparison, we explored a comprehensive quantitative method for defining the constrained stage using expressed sequence tag (EST) data, gene ontologies (GO), and available genomes of various animals. If strong developmental constraints occur during the phylotypic stage of vertebrate embryos, then genes conserved among vertebrates would be highly expressed at this stage. RESULTS: We established a novel method for evaluating the ancestral nature of mouse embryonic stages that does not depend on comparative morphology. The numerical "ancestor index" revealed that the mouse indeed has a highly conserved embryonic period at embryonic day 8.0–8.5, the time of appearance of the pharyngeal arch and somites. During this period, the mouse prominently expresses GO-determined developmental genes shared among vertebrates. Similar analyses revealed the existence of a bilaterian-related period, during which GO-determined developmental genes shared among bilaterians are markedly expressed at the cleavage-to-gastrulation period. The genes associated with the phylotypic stage identified by our method are essential in embryogenesis. CONCLUSION: Our results demonstrate that the mid-embryonic stage of the mouse is indeed highly constrained, supporting the existence of the phylotypic stage. Furthermore, this candidate stage is preceded by a putative bilaterian ancestor-related period. These results not only support the developmental hourglass model, but also highlight the hierarchical aspect of embryogenesis proposed by von Baer. Identification of conserved stages and tissues by this method in various animals would be a powerful tool to examine the phylotypic stage hypothesis, and to understand which kinds of developmental events and gene sets are evolutionarily constrained and how they limit the possible variations of animal basic body plans

    Improved Weighted Random Forest for Classification Problems

    Get PDF
    Several studies have shown that combining machine learning models in an appropriate way will introduce improvements in the individual predictions made by the base models. The key to make well-performing ensemble model is in the diversity of the base models. Of the most common solutions for introducing diversity into the decision trees are bagging and random forest. Bagging enhances the diversity by sampling with replacement and generating many training data sets, while random forest adds selecting a random number of features as well. This has made the random forest a winning candidate for many machine learning applications. However, assuming equal weights for all base decision trees does not seem reasonable as the randomization of sampling and input feature selection may lead to different levels of decision-making abilities across base decision trees. Therefore, we propose several algorithms that intend to modify the weighting strategy of regular random forest and consequently make better predictions. The designed weighting frameworks include optimal weighted random forest based on ac-curacy, optimal weighted random forest based on the area under the curve (AUC), performance-based weighted random forest, and several stacking-based weighted random forest models. The numerical results show that the proposed models are able to introduce significant improvements compared to regular random forest

    Task-Dependent Interaction between Parietal and Contralateral Primary Motor Cortex during Explicit versus Implicit Motor Imagery

    Get PDF
    Both mental rotation (MR) and motor imagery (MI) involve an internalization of movement within motor and parietal cortex. Transcranial magnetic stimulation (TMS) techniques allow for a task-dependent investigation of the interhemispheric interaction between these areas. We used image-guided dual-coil TMS to investigate interactions between right inferior parietal lobe (rIPL) and left primary motor cortex (M1) in 11 healthy participants. They performed MI (right index-thumb pinching in time with a 1 Hz metronome) or hand MR tasks, while motor evoked potentials (MEPs) were recorded from right first dorsal interosseous. At rest, rIPL conditioning 6 ms prior to M1 stimulation facilitated MEPs in all participants, whereas this facilitation was abolished during MR. While rIPL conditioning 12 ms prior to M1 stimulation had no effect on MEPs at rest, it suppressed corticomotor excitability during MI. These results support the idea that rIPL forms part of a distinct inhibitory network that may prevent unwanted movement during imagery tasks

    Detecting and correcting partial errors: Evidence for efficient control without conscious access

    Get PDF
    Appropriate reactions to erroneous actions are essential to keeping behavior adaptive. Erring, however, is not an all-or-none process: electromyographic (EMG) recordings of the responding muscles have revealed that covert incorrect response activations (termed "partial errors") occur on a proportion of overtly correct trials. The occurrence of such "partial errors" shows that incorrect response activations could be corrected online, before turning into overt errors. In the present study, we showed that, unlike overt errors, such "partial errors" are poorly consciously detected by participants, who could report only one third of their partial errors. Two parameters of the partial errors were found to predict detection: the surface of the incorrect EMG burst (larger for detected) and the correction time (between the incorrect and correct EMG onsets; longer for detected). These two parameters provided independent information. The correct(ive) responses associated with detected partial errors were larger than the "pure-correct" ones, and this increase was likely a consequence, rather than a cause, of the detection. The respective impacts of the two parameters predicting detection (incorrect surface and correction time), along with the underlying physiological processes subtending partial-error detection, are discussed

    Memory for Self-Performed Actions in Individuals with Asperger Syndrome

    Get PDF
    Memory for action is enhanced if individuals are allowed to perform the corresponding movements, compared to when they simply listen to them (enactment effect). Previous studies have shown that individuals with Autism Spectrum Disorders (ASD) have difficulties with processes involving the self, such as autobiographical memories and self performed actions. The present study aimed at assessing memory for action in Asperger Syndrome (AS). We investigated whether adults with AS would benefit from the enactment effect when recalling a list of previously performed items vs. items that were only visually and verbally experienced through three experimental tasks (Free Recall, Old/New Recognition and Source Memory). The results showed that while performance on Recognition and Source Memory tasks was preserved in individuals with AS, the enactment effect for self-performed actions was not consistently present, as revealed by the lower number of performed actions being recalled on the Free Recall test, as compared to adults with typical development. Subtle difficulties in encoding specific motor and proprioceptive signals during action execution in individuals with AS might affect retrieval of relevant personal episodic information. These disturbances might be associated to an impaired action monitoring system

    Grasping Kinematics from the Perspective of the Individual Digits: A Modelling Study

    Get PDF
    Grasping is a prototype of human motor coordination. Nevertheless, it is not known what determines the typical movement patterns of grasping. One way to approach this issue is by building models. We developed a model based on the movements of the individual digits. In our model the following objectives were taken into account for each digit: move smoothly to the preselected goal position on the object without hitting other surfaces, arrive at about the same time as the other digit and never move too far from the other digit. These objectives were implemented by regarding the tips of the digits as point masses with a spring between them, each attracted to its goal position and repelled from objects' surfaces. Their movements were damped. Using a single set of parameters, our model can reproduce a wider variety of experimental findings than any previous model of grasping. Apart from reproducing known effects (even the angles under which digits approach trapezoidal objects' surfaces, which no other model can explain), our model predicted that the increase in maximum grip aperture with object size should be greater for blocks than for cylinders. A survey of the literature shows that this is indeed how humans behave. The model can also adequately predict how single digit pointing movements are made. This supports the idea that grasping kinematics follow from the movements of the individual digits

    Behavioural Significance of Cerebellar Modules

    Get PDF
    A key organisational feature of the cerebellum is its division into a series of cerebellar modules. Each module is defined by its climbing input originating from a well-defined region of the inferior olive, which targets one or more longitudinal zones of Purkinje cells within the cerebellar cortex. In turn, Purkinje cells within each zone project to specific regions of the cerebellar and vestibular nuclei. While much is known about the neuronal wiring of individual cerebellar modules, their behavioural significance remains poorly understood. Here, we briefly review some recent data on the functional role of three different cerebellar modules: the vermal A module, the paravermal C2 module and the lateral D2 module. The available evidence suggests that these modules have some differences in function: the A module is concerned with balance and the postural base for voluntary movements, the C2 module is concerned more with limb control and the D2 module is involved in predicting target motion in visually guided movements. However, these are not likely to be the only functions of these modules and the A and C2 modules are also both concerned with eye and head movements, suggesting that individual cerebellar modules do not necessarily have distinct functions in motor control

    Coupling changes in cell shape to chromosome segregation

    Get PDF
    Animal cells undergo dramatic changes in shape, mechanics and polarity as they progress through the different stages of cell division. These changes begin at mitotic entry, with cell–substrate adhesion remodelling, assembly of a cortical actomyosin network and osmotic swelling, which together enable cells to adopt a near spherical form even when growing in a crowded tissue environment. These shape changes, which probably aid spindle assembly and positioning, are then reversed at mitotic exit to restore the interphase cell morphology. Here, we discuss the dynamics, regulation and function of these processes, and how cell shape changes and sister chromatid segregation are coupled to ensure that the daughter cells generated through division receive their fair inheritance
    • …
    corecore