53 research outputs found

    Efaproxiral red blood cell concentration predicts efficacy in patients with brain metastases

    Get PDF
    Efaproxiral (Efaproxyn™, RSR13), a synthetic allosteric modifier of haemoglobin (Hb), decreases Hb-oxygen (O2) binding affinity and enhances oxygenation of hypoxic tumours during radiation therapy. This analysis evaluated the Phase 3, Radiation Enhancing Allosteric Compound for Hypoxic Brain Metastases; RT-009 (REACH) study efficacy results in relation to efaproxiral exposure (efaproxiral red blood cell concentration (E-RBC) and number of doses). Recursive partitioning analysis Class I or II patients with brain metastases from solid tumours received standard whole-brain radiation therapy (3 Gy/fraction × 10 days), plus supplemental O2 (4 l/min), either with efaproxiral (75 or 100 mg/kg daily) or without (control). Efaproxiral red blood cell concentrations were linearly extrapolated to all efaproxiral doses received. Three patient populations were analysed: (1) all eligible, (2) non-small-cell lung cancer (NSCLC) as primary cancer, and (3) breast cancer primary. Efficacy endpoints were survival and response rate. Brain metastases patients achieving sufficient E-RBC (⩾483 μg/ml) and receiving at least seven of 10 efaproxiral doses were most likely to experience survival and response benefits. Patients with breast cancer primary tumours generally achieved the target efaproxiral exposure and therefore gained greater benefit from efaproxiral treatment than NSCLC patients. This analysis defined the efaproxiral concentration-dependence in survival and response rate improvement, and provided a clearer understanding of efaproxiral dosing requirements

    Spontaneous Quaternary and Tertiary T-R Transitions of Human Hemoglobin in Molecular Dynamics Simulation

    Get PDF
    We present molecular dynamics simulations of unliganded human hemoglobin (Hb) A under physiological conditions, starting from the R, R2, and T state. The simulations were carried out with protonated and deprotonated HC3 histidines His(β)146, and they sum up to a total length of 5.6µs. We observe spontaneous and reproducible T→R quaternary transitions of the Hb tetramer and tertiary transitions of the α and β subunits, as detected from principal component projections, from an RMSD measure, and from rigid body rotation analysis. The simulations reveal a marked asymmetry between the α and β subunits. Using the mutual information as correlation measure, we find that the β subunits are substantially more strongly linked to the quaternary transition than the α subunits. In addition, the tertiary populations of the α and β subunits differ substantially, with the β subunits showing a tendency towards R, and the α subunits showing a tendency towards T. Based on the simulation results, we present a transition pathway for coupled quaternary and tertiary transitions between the R and T conformations of Hb

    Bound Water at Protein-Protein Interfaces: Partners, Roles and Hydrophobic Bubbles as a Conserved Motif

    Get PDF
    Background There is a great interest in understanding and exploiting protein-protein associations as new routes for treating human disease. However, these associations are difficult to structurally characterize or model although the number of X-ray structures for protein-protein complexes is expanding. One feature of these complexes that has received little attention is the role of water molecules in the interfacial region. Methodology A data set of 4741 water molecules abstracted from 179 high-resolution (≤ 2.30 Å) X-ray crystal structures of protein-protein complexes was analyzed with a suite of modeling tools based on the HINT forcefield and hydrogen-bonding geometry. A metric termed Relevance was used to classify the general roles of the water molecules. Results The water molecules were found to be involved in: a) (bridging) interactions with both proteins (21%), b) favorable interactions with only one protein (53%), and c) no interactions with either protein (26%). This trend is shown to be independent of the crystallographic resolution. Interactions with residue backbones are consistent for all classes and account for 21.5% of all interactions. Interactions with polar residues are significantly more common for the first group and interactions with non-polar residues dominate the last group. Waters interacting with both proteins stabilize on average the proteins\u27 interaction (−0.46 kcal mol−1), but the overall average contribution of a single water to the protein-protein interaction energy is unfavorable (+0.03 kcal mol−1). Analysis of the waters without favorable interactions with either protein suggests that this is a conserved phenomenon: 42% of these waters have SASA ≤ 10 Å2 and are thus largely buried, and 69% of these are within predominantly hydrophobic environments or “hydrophobic bubbles”. Such water molecules may have an important biological purpose in mediating protein-protein interactions

    A Peptidoglycan Fragment Triggers β-lactam Resistance in Bacillus licheniformis

    Get PDF
    To resist to β-lactam antibiotics Eubacteria either constitutively synthesize a β-lactamase or a low affinity penicillin-binding protein target, or induce its synthesis in response to the presence of antibiotic outside the cell. In Bacillus licheniformis and Staphylococcus aureus, a membrane-bound penicillin receptor (BlaR/MecR) detects the presence of β-lactam and launches a cytoplasmic signal leading to the inactivation of BlaI/MecI repressor, and the synthesis of a β-lactamase or a low affinity target. We identified a dipeptide, resulting from the peptidoglycan turnover and present in bacterial cytoplasm, which is able to directly bind to the BlaI/MecI repressor and to destabilize the BlaI/MecI-DNA complex. We propose a general model, in which the acylation of BlaR/MecR receptor and the cellular stress induced by the antibiotic, are both necessary to generate a cell wall-derived coactivator responsible for the expression of an inducible β-lactam-resistance factor. The new model proposed confirms and emphasizes the role of peptidoglycan degradation fragments in bacterial cell regulation

    Structure of the MecI repressor from Staphylococcus aureus in complex with the cognate DNA operator of mec.

    No full text
    [[sponsorship]]生物化學研究所[[note]]已出版;[SCI];有審查制度;具代表性[[note]]http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Drexel&SrcApp=hagerty_opac&KeyRecord=1744-3091&DestApp=JCR&RQ=IF_CAT_BOXPLOT[[note]]http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=RID&SrcApp=RID&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=00023647000000

    Biomedical aspects of pyridoxal 5’-phosphate availability

    No full text
    The biologically active form of vitamin B6, pyridoxal 5'-phosphate (PLP), is a cofactor in over 160 enzyme activities involved in a number of metabolic pathways, including neurotransmitter synthesis and degradation. In humans, PLP is recycled from food and from degraded PLP-dependent enzymes in a salvage pathway requiring the action of pyridoxal kinase, pyridoxine 5'-phosphate oxidase and phosphatases. Once pyridoxal 5'-phosphate is made, it is targeted to the dozens different apoenzymes that need it as a cofactor. The regulation of the salvage pathway and the mechanism of addition of PLP to the apoenzymes are poorly understood and represent a very challenging research field. Severe neurological disorders, such as convulsions and epileptic encephalopathy, result from a reduced availability of pyridoxal 5'-phosphate in the cell, due to inborn errors in the enzymes of the salvage pathway or other metabolisms and to interactions of drugs with PLP or pyridoxal kinase. Multifactorial neurological pathologies, such as autism, schizophrenia, Alzheimer's disease, Parkinson's disease and epilepsy have also been correlated to inadequate intracellular levels of PLP

    VITAMIN B(6) SALVAGE ENZYMES: MECHANISM, STRUCTURE AND REGULATION.

    No full text
    Vitamin B(6) is a generic term referring to pyridoxine, pyridoxamine, pyridoxal and their related phosphorylated forms. Pyridoxal 5'-phosphate is the catalytically active form of vitamin B(6), and acts as cofactor in more than 140 different enzyme reactions. In animals, pyridoxal 5'-phosphate is recycled from food and from degraded B(6)-enzymes in a "salvage pathway", which essentially involves two ubiquitous enzymes: an ATP-dependent pyridoxal kinase and an FMN-dependent pyridoxine 5'-phosphate oxidase. Once it is made, pyridoxal 5'-phosphate is targeted to the dozens of different apo-B(6) enzymes that are being synthesized in the cell. The mechanism and regulation of the salvage pathway and the mechanism of addition of pyridoxal 5'-phosphate to the apo-B(6)-enzymes are poorly understood and represent a very challenging research field. Pyridoxal kinase and pyridoxine 5'-phosphate oxidase play kinetic roles in regulating the level of pyridoxal 5'-phosphate formation. Deficiency of pyridoxal 5'-phosphate due to inborn defects of these enzymes seems to be involved in several neurological pathologies. In addition, inhibition of pyridoxal kinase activity by several pharmaceutical and natural compounds is known to lead to pyridoxal 5'-phosphate deficiency. Understanding the exact role of vitamin B(6) in these pathologies requires a better knowledge on the metabolism and homeostasis of the vitamin. This article summarizes the current knowledge on structural, kinetic and regulation features of the two enzymes involved in the PLP salvage pathway. We also discuss the proposal that newly formed PLP may be transferred from either enzyme to apo-B(6)-enzymes by direct channeling, an efficient, exclusive, and protected means of delivery of the highly reactive PLP. This new perspective may lead to novel and interesting findings, as well as serve as a model system for the study of macromolecular channeling. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology

    Serine hydroxymethyltransferase: role of glu75 and evidence that serine is cleaved by a retroaldol mechanism

    No full text
    Serine hydroxymethyltransferase (SHMT) catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate serving as the one-carbon carrier. SHMT also catalyzes the folate-independent retroaldol cleavage of allothreonine and 3-phenylserine and the irreversible conversion of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate. Studies of wild-type and site mutants of SHMT have failed to clearly establish the mechanism of this enzyme. The cleavage of 3-hydroxy amino acids to glycine and an aldehyde occurs by a retroaldol mechanism. However, the folate-dependent cleavage of serine can be described by either the same retroaldol mechanism with formaldehyde as an enzyme-bound intermediate or by a nucleophilic displacement mechanism in which N5 of tetrahydrofolate displaces the C3 hydroxyl of serine, forming a covalent intermediate. Glu75 of SHMT is clearly involved in the reaction mechanism; it is within hydrogen bonding distance of the hydroxyl group of serine and the formyl group of 5-formyltetrahydrofolate in complexes of these species with SHMT. This residue was changed to Leu and Gln, and the structures, kinetics, and spectral properties of the site mutants were determined. Neither mutation significantly changed the structure of SHMT, the spectral properties of its complexes, or the kinetics of the retroaldol cleavage of allothreonine and 3-phenylserine. However, both mutations blocked the folate-dependent serine-to-glycine reaction and the conversion of methenyltetrahydrofolate to 5-formyltetrahydrofolate. These results clearly indicate that interaction of Glu75 with folate is required for folate-dependent reactions catalyzed by SHMT. Moreover, we can now propose a promising modification to the retroaldol mechanism for serine cleavage. As the first step, N5 of tetrahydrofolate makes a nucleophilic attack on C3 of serine, breaking the C2-C3 bond to form N5-hydroxymethylenetetrahydrofolate and an enzyme-bound glycine anion. The transient formation of formaldehyde as an intermediate is possible, but not required. This mechanism explains the greatly enhanced rate of serine cleavage in the presence of folate, and avoids some serious difficulties presented by the nucleophilic displacement mechanism involving breakage of the C3-OH bond

    COMUNICAZIONE ORALE A CONGRESSO SU INVITO “On the mechanism of addition of pyridoxal 5’-phosphate to serine hydroxymethyltransferase”, in The Third International Conference on Cofactors (ICC03), Finland, Turku, 10-15 July 2011.

    No full text
    ON THE MECHANISM OF PYRIDOXAL 5’-PHOSPHATE ADDITION TO SERINE HYDROXYMETHYLTRANSFERASE. Roberto Contestabile1, Rita Florio1, Isabel Noguès2, Martin K. Safo3, Verne Schirch3 and Martino Luigi di Salvo1 1Dipartimento di Scienze Biochimiche and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy, w3.uniroma1.it/bio_chem/sito_biochimica/EN/index.html 2Istituto di Biologia Agroambientale e Forestale, Centro Nazionale delle Ricerche, Monterotondo Scalo, Roma, Italy. 3Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, VA, USA. The addition of cofactors to newly synthesized apo-proteins in the cell is a crucial event that can occur at different stages of polypeptide folding and affect it to a variable extent. The form in which the cofactor is available in the intracellular medium may also differ according to its reactivity or toxicity. Although much work has been done on the mechanism and structure of vitamin B6–dependent enzymes, little is known on how pyridoxal 5’phosphate (PLP) is supplied to the apoenzymes in order to meet their requirement in terms of cofactor. Free PLP availability in the cell is significantly limited by the high reactivity of its aldehyde group, forming aldimines with amino groups on non-B6 enzymes and amino acids, as well as by dephosphorylation by phosphatases. This raises the intriguing question of how the cell supplies sufficient PLP, with high specificity, to the dozens of B6 enzymes. The traditionally proposed mechanism involves a release of PLP from the enzymes that catalyze its formation into solution, where it finds its way to the active site of apo-B6 enzymes. An obvious problem with this mode of PLP addition is the potential interactions of the cofactor with nucleophiles and its dephosphorylation by phosphatases, which would significantly deplete the free PLP availability. An alternative mechanism for PLP addition involves a direct channeling from the enzymes that produce it in the cell to the acceptor B6 enzymes, thus avoiding its release into solution. This mechanism offers an efficient, exclusive, and protected means of delivery of the reactive PLP. As we approached this matter, we chose Escherichia coli as a model system. To start with, we decided to use serine hydroxymethyltransferase (eSHMT) as PLP acceptor, since this is a well characterized fold type I B6 enzyme. A first step was the understanding of how free PLP reacts in vitro with apo-eSHMT to form the active holoenzyme. Thereafter, we focused on the mechanism of PLP transfer from the enzymes that catalyse its formation in the E. coli cell, pyridoxine phosphate oxidase and pyridoxal kinase, to eSHMT. The transfer kinetic studies were performed by means of UV-visible spectroscopy, circular dichroism measurements and chemical quenched-flow experiments. Our presentation will The results obtained are in favor of a channeling mechanism
    corecore