841 research outputs found

    Epstein-Barr virus infections and DNA hybridization studies in posttransplantation lymphoma and lymphoproliferative lesions: The role of primary infection

    Get PDF
    Fourteen patients who developed B cell lymphomas or lymphoproliferative lesions after kidney, liver, heart, or heart-lung transplantation in Pittsburgh during 1981-1983 had active infection with Epstein-Barr virus (EBV)of the primary (six patients), reactivated (seven patients), or chronic (one patient) type. In transplant patients without tumors, the incidence of EBV infection was 30% (39 of 128). Only three of these patients had primary infections. Thus the frequency of active infection was significantly higher in patients with tumors, and patients with primary infections were at greater risk of developing tumors. Five of 13 tumors tested contained EBV nuclear antigen (EBNA) and nine of 11 contained EBV genomes detected by DNA-DNA hybridization with BamHI K, BamHI W, or EcoRI B cloned probes. All EBNA-positive tumors, except one, were also positive by hybridization. Only one tumor was negative for both EBNA and EBV DNA. These data suggest that EBV plays an etiologic role in the development of these lesions. © 1985 by The University of Chicago

    RepSeq-A database of amino acid repeats present in lower eukaryotic pathogens

    Get PDF
    BACKGROUND Amino acid repeat-containing proteins have a broad range of functions and their identification is of relevance to many experimental biologists. In human-infective protozoan parasites (such as the Kinetoplastid and Plasmodium species), they are implicated in immune evasion and have been shown to influence virulence and pathogenicity. RepSeq http://repseq.gugbe.com is a new database of amino acid repeat-containing proteins found in lower eukaryotic pathogens. The RepSeq database is accessed via a web-based application which also provides links to related online tools and databases for further analyses. RESULTS The RepSeq algorithm typically identifies more than 98% of repeat-containing proteins and is capable of identifying both perfect and mismatch repeats. The proportion of proteins that contain repeat elements varies greatly between different families and even species (3 - 35% of the total protein content). The most common motif type is the Sequence Repeat Region (SRR) - a repeated motif containing multiple different amino acid types. Proteins containing Single Amino Acid Repeats (SAARs) and Di-Peptide Repeats (DPRs) typically account for 0.5 - 1.0% of the total protein number. Notable exceptions are P. falciparum and D. discoideum, in which 33.67% and 34.28% respectively of the predicted proteomes consist of repeat-containing proteins. These numbers are due to large insertions of low complexity single and multi-codon repeat regions. CONCLUSION The RepSeq database provides a repository for repeat-containing proteins found in parasitic protozoa. The database allows for both individual and cross-species proteome analyses and also allows users to upload sequences of interest for analysis by the RepSeq algorithm. Identification of repeat-containing proteins provides researchers with a defined subset of proteins which can be analysed by expression profiling and functional characterisation, thereby facilitating study of pathogenicity and virulence factors in the parasitic protozoa. While primarily designed for kinetoplastid work, the RepSeq algorithm and database retain full functionality when used to analyse other species

    Increasing incidence of malaria in children despite insecticide-treated bed nets and prompt anti-malarial therapy in Tororo, Uganda.

    Get PDF
    BACKGROUND: The burden of malaria has decreased in parts of Africa following the scaling up of control interventions. However, similar data are limited from high transmission settings. METHODS: A cohort of 100 children, aged six weeks to 10 months of age, were enrolled in an area of high malaria transmission intensity and followed through 48 months of age. Children were given a long-lasting insecticide-treated bed net (LLIN) at enrolment and received all care, including monthly blood smears and treatment with artemisinin-based combination therapy (ACT) for uncomplicated malaria, at a dedicated clinic. The incidence of malaria was estimated by passive surveillance and associations between malaria incidence and age, calendar time and season were measured using generalized estimating equations. RESULTS: Reported compliance with LLINs was 98% based on monthly routine evaluations. A total of 1,633 episodes of malaria were observed, with a median incidence of 5.3 per person-year (PPY). There were only six cases of complicated malaria, all single convulsions. Malaria incidence peaked at 6.5 PPY at 23 months of age before declining to 3.5 PPY at 48 months. After adjusting for age and season, the risk of malaria increased by 52% from 2008 to 2011 (RR 1.52, 95% CI 1.10-2.09). Asymptomatic parasitaemia was uncommon (monthly prevalence <10%) and rarely observed prior to 24 months of age. CONCLUSIONS: In Tororo, despite provision of LLINs and prompt treatment with ACT, the incidence of malaria is very high and appears to be rising. Additional malaria control interventions in high transmission settings are likely needed. TRIAL REGISTRATION: Current Controlled Trials Identifier NCT00527800

    Autoreactive T cell profiles are altered following allogeneic islet transplantation with alemtuzumab induction and re‐emerging phenotype is associated with graft function

    Get PDF
    Islet transplantation is an effective therapy for life‐threatening hypoglycemia, but graft function gradually declines over time in many recipients. We characterized islet‐specific T cells in recipients within an islet transplant program favoring alemtuzumab (ATZ) lymphodepleting induction and examined associations with graft function. Fifty‐eight recipients were studied: 23 pretransplant and 40 posttransplant (including 5 with pretransplant phenotyping). The proportion with islet‐specific T cell responses was not significantly different over time (pre‐Tx: 59%; 1–6 m posttransplant: 38%; 7–12 m: 44%; 13–24 m: 47%; and >24 m: 45%). However, phenotype shifted significantly, with IFN‐γ–dominated response in the pretransplant group replaced by IL‐10–dominated response in the 1–6 m posttransplant group, reverting to predominantly IFN‐γ–oriented response in the >24 m group. Clustering analysis of posttransplant responses revealed two main agglomerations, characterized by IFN‐γ and IL‐10 phenotypes, respectively. IL‐10–oriented posttransplant response was associated with relatively low graft function. Recipients within the IL‐10+ cluster had a significant decline in C‐peptide levels in the period preceding the IL‐10 response, but stable graft function following the response. In contrast, an IFN‐γ response was associated with subsequently decreased C‐peptide. Islet transplantation favoring ATZ induction is associated with an initial altered islet‐specific T cell phenotype but reversion toward pretransplant profiles over time. Posttransplant autoreactive T cell phenotype may be a predictor of subsequent graft function

    Genetic Deletion of a Single Immunodominant T-cell Response Confers Susceptibility to Virus-induced Demyelination

    Get PDF
    An important question in neuropathology involves determining the antigens that are targeted during demyelinating disease. Viral infection of the central nervous system (CNS) leads to T-cell responses that can be protective as well as pathogenic. In the Theiler’s murine encephalomyelitis virus (TMEV) model of demyelination it is known that the immune response to the viral capsid protein 2 (VP2) is critical for disease pathogenesis. This study shows that expressing the whole viral capsid VP2 or the minimal CD8-specific peptide VP2(121-130) as “self” leads to a loss of VP2-specific immune responses. Loss of responsiveness is caused by T cell-specific tolerance, as VP2-specific antibodies are generated in response to infection. More importantly, these mice lose the CD8 T-cell response to the immunodominant peptide VP2(121-130), which is critical for the development of demyelinating disease. The transgenic mice fail to clear the infection and develop chronic demyelinating disease in the spinal cord white matter. These findings demonstrate that T-cell responses can be removed by transgenic expression and that lack of responsiveness alters viral clearance and CNS pathology. This model will be important for understanding the mechanisms involved in antigen-specific T-cell deletion and the contribution of this response to CNS pathology

    Effects of the SGLT2 inhibitor canagliflozin on plasma biomarkers TNFR-1, TNFR-2 and KIM-1 in the CANVAS trial

    Get PDF
    Aims/hypothesis Higher plasma concentrations of tumour necrosis factor receptor (TNFR)-1, TNFR-2 and kidney injury molecule-1 (KIM-1) have been found to be associated with higher risk of kidney failure in individuals with type 2 diabetes in previous studies. Whether drugs can reduce these biomarkers is not well established. We measured these biomarkers in samples of the CANVAS study and examined the effect of the sodium–glucose cotransporter 2 inhibitor canagliflozin on these biomarkers and assessed whether the early change in these biomarkers predict cardiovascular and kidney outcomes in individuals with type 2 diabetes in the CANagliflozin cardioVascular Assessment Study (CANVAS). Methods Biomarkers were measured with immunoassays (proprietary multiplex assay performed by RenalytixAI, New York, NY, USA) at baseline and years 1, 3 and 6. Mixed-effects models for repeated measures assessed the effect of canagliflozin vs placebo on the biomarkers. Associations of baseline levels and the early change (baseline to year 1) for each biomarker with the kidney outcome were assessed using multivariable-adjusted Cox regression. Results In total, 3523/4330 (81.4%) of the CANVAS participants had available samples at baseline. Each doubling in baseline TNFR-1, TNFR-2 and KIM-1 was associated with a higher risk of kidney outcomes, with corresponding HRs of 3.7 (95% CI 2.3, 6.1; p < 0.01), 2.7 (95% CI 2.0, 3.6; p < 0.01) and 1.5 (95% CI 1.2, 1.8; p < 0.01), respectively. Canagliflozin reduced the level of the plasma biomarkers with differences in TNFR-1, TNFR-2 and KIM-1 between canagliflozin and placebo during follow-up of 2.8% (95% CI 3.4%, 1.3%; p < 0.01), 1.9% (95% CI 3.5%, 0.2%; p = 0.03) and 26.7% (95% CI 30.7%, 22.7%; p < 0.01), respectively. Within the canagliflozin treatment group, each 10% reduction in TNFR-1 and TNFR-2 at year 1 was associated with a lower risk of the kidney outcome (HR 0.8 [95% CI 0.7, 1.0; p = 0.02] and 0.9 [95% CI 0.9, 1.0; p < 0.01] respectively), independent of other patient characteristics. The baseline and 1 year change in biomarkers did not associate with cardiovascular or heart failure outcomes. Conclusions/interpretation Canagliflozin decreased KIM-1 and modestly reduced TNFR-1 and TNFR-2 compared with placebo in individuals with type 2 diabetes in CANVAS. Early decreases in TNFR-1 and TNFR-2 during canagliflozin treatment were independently associated with a lower risk of kidney disease progression, suggesting that TNFR-1 and TNFR-2 have the potential to be pharmacodynamic markers of response to canagliflozin

    Mining a Cathepsin Inhibitor Library for New Antiparasitic Drug Leads

    Get PDF
    The targeting of parasite cysteine proteases with small molecules is emerging as a possible approach to treat tropical parasitic diseases such as sleeping sickness, Chagas' disease, and malaria. The homology of parasite cysteine proteases to the human cathepsins suggests that inhibitors originally developed for the latter may be a source of promising lead compounds for the former. We describe here the screening of a unique ∼2,100-member cathepsin inhibitor library against five parasite cysteine proteases thought to be relevant in tropical parasitic diseases. Compounds active against parasite enzymes were subsequently screened against cultured Plasmodium falciparum, Trypanosoma brucei brucei and/or Trypanosoma cruzi parasites and evaluated for cytotoxicity to mammalian cells. The end products of this effort include the identification of sub-micromolar cell-active leads as well as the elucidation of structure-activity trends that can guide further optimization efforts

    The continuum of spreading depolarizations in acute cortical lesion development: Examining Leão's legacy.

    Get PDF
    A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum of spreading mass depolarizations, a concept that is central to understanding their pathologic effects. Within minutes of acute severe ischemia, the onset of persistent depolarization triggers the breakdown of ion homeostasis and development of cytotoxic edema. These persistent changes are diagnosed as diffusion restriction in magnetic resonance imaging and define the ischemic core. In delayed lesion growth, transient spreading depolarizations arise spontaneously in the ischemic penumbra and induce further persistent depolarization and excitotoxic damage, progressively expanding the ischemic core. The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion development. These pathophysiologic concepts establish a working hypothesis for translation to human disease, where complex patterns of depolarizations are observed in acute brain injury and appear to mediate and signal ongoing secondary damage
    corecore