14 research outputs found

    COX-2 selective inhibition reverses the trophic properties of gastrin in colorectal cancer

    Get PDF
    Gastrin is a gastrointestinal peptide that possesses potent trophic properties on both normal and neoplastic cells of gastrointestinal origin. Previous studies have indicated that chronic hypergastrinaemia increases the risk of colorectal cancer and cancer growth and that interruption of the effects of gastrin could be a potential target in the treatment of colorectal cancer. Here we demonstrate that gastrin leads to a dose-dependent increase in colon cancer cell proliferation and tumour growth in vitro and in vivo, and that this increment is progressively reversed by pretreatment with the cyclo-oxygenase-2 inhibitor NS-398. Gastrin was able to induce cyclo-oxygenase-2 protein expression, as well as the synthesis of prostaglandin E2, the major product of cyclo-oxygenase. Moreover, gastrin leads to approximately a two-fold induction of cyclo-oxygenase-2 promoter activity in transiently transfected cells. The results of these studies demonstrate that cyclo-oxygenase-2 appears to represent one of the downstream targets of gastrin and that selective cyclo-oxygenase-2 inhibition is capable of reversing the trophic properties of gastrin and presumably might prevent the growth of colorectal cancer induced by hypergastrinaemia

    Anti‑algal activity of the 12‑5‑12 gemini surfactant results from its impact on the photosynthetic apparatus

    Get PDF
    A rapid amplification of algal population has a negative impact on the environment and the global economy. Thus, control of algal proliferation is an important issue and effective procedures which reduce algal blooms and control algal fouling are highly desired. Gemini surfactants are considered to have a low environmental impact, therefore they seem to be a promising group of detergents which could reduce algal blooms in water systems. Furthermore, due to their emulsifying properties they could replace algaecides added to antifouling paints and decrease algae adhesion to various surfaces. In this study the toxic effect of the 12-5-12 gemini surfactant was investigated on Chlorella cells and close attention was paid to a potential mechanism of its action. At the high cell density (10.05 × 107 cells/mL) a dose-dependent cell death was found and the IC50 value was reached at the concentration of 19.6 µmol/L after 72-h exposure to the surfactant. The decrease in chlorophyll autofluorescence shows that the photosynthetic apparatus seems to be the target of the tested compound. The presented studies indicate that gemini surfactants could effectively reduce algal blooms in water systems, and if added to paints, they could decrease algal growth on external building walls or other water immersed surfaces
    corecore